Summary of Study ST003940

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001844. The data can be accessed directly via it's Project DOI: 10.21228/M8C145 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST003940
Study TitleComprehensive Untargeted LC-MS Metabolomics Analysis of CYP19A1/SLC22A11/CYP11A1/HSD17B1/ABCG2 Knockout iPSCs
Study SummaryHuman induced pluripotent stem cells (hIPSCs) are a key tool for biomedical research. Using CRISPR-cas9, null mutations were generated in KOLF2.2J hIPSCs and subsequently differentiated into primitive syncytium. In this study, a premature stop codon approach was employed to generate null alleles for CYP19A1, SLC22A11, CYP11A1, HSD17B1, and ABCG2, encoding key enzymes in the steroidogenesis pathway. Cells were cultured on media with and without DHEA-S, a stimulator of steroidogenesis and subsequently biochemically phenotyped. Biochemical phenotyping, i.e., untargeted metabolomics and lipidomics profiling, was performed on both differentiated wild-type controls and mutants, using a Thermo Scientific Q Exactive HF-X Mass Spectrometer coupled to a Thermo Vanquish Duo UHPLC Systems, equipped with an HES-II ionization source, using both reverse phase positive and HILIC negative methods. in this dataset, chemoselective derivatization was also performed on cell pellets and supernatant using Dansyl Hydrazine and Dansyl Chloride (DnHz and DnCl) using an in-house method to enhance detection of specific sub metabolomes (e.g., estrogens and other steroids) depending by their reactivity towards these reagents. This study contains data from both cell pellets and supernatant derived from the described cell lines. By comparing the metabolic and lipidomic profiles of these samples, phenotypic differences can be explained at a molecular level. This is particularly useful for non-transcriptional factors that can otherwise be difficult to characterize with transcriptomics approaches. This study was funded, in part, through UM1HG012651 which established the JAX MorPhiC Center, a MorPhiC Phase 1 Data Production Research and Development Center at the Jackson Laboratory for Genomic Medicine.
Institute
The Jackson Laboratory for Genomic Medicine
Last NameChi
First NameYuanye
Address10 Discovery Dr, Farmington, CT
Emailyuanye.chi@jax.org
Phone3395456866
Submit Date2025-05-13
Raw Data AvailableYes
Raw Data File Type(s)mzML
Analysis Type DetailLC-MS
Release Date2025-06-09
Release Version1
Yuanye Chi Yuanye Chi
https://dx.doi.org/10.21228/M8C145
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR001844
Project DOI:doi: 10.21228/M8C145
Project Title:Molecular Phenotypes of Null Alleles in Cells
Project Summary:The 2020 NHGRI Strategic Vision laid out a set of “bold predictions for human genomics by 2030” including elucidating the biological function(s) of each human gene. The Molecular Phenotypes of Null Alleles in Cells (MorPhiC) seeks to address this element of the strategic vision. Through the comprehensive generation of null alleles for every human gene and then cataloging the resulting molecular and cellular phenotypes, the mechanisms that relate gene function to observed phenotypes can be determined. Furthermore, the resulting catalog of knockouts and phenotypes will be made available for broader use by the biomedical community. Although multiple approaches can be leveraged to measure molecular and cellular phenotypes resulting from gene knockouts, metabolomics and lipidomics (i.e., biochemical phenotyping) provides an avenue to understand the link between gene function and phenotypes at a molecular level. This project consists of studies performed to biochemical phenotype of cell lines and other samples generated as part of MorPhiC. Resources: 1. https://www.nih.gov/news-events/news-releases/nih-initiative-systematically-investigate-establish-function-every-human-gene 2. https://www.genome.gov/research-funding/Funded-Programs-Projects/Molecular-Phenotypes-of-Null-Alleles-in-Cells
Institute:The Jackson Laboratory for Genomic Medicine
Laboratory:Shuzhao Li Lab
Last Name:Chi
First Name:Yuanye
Address:10 Discovery Dr, Farmington, CT
Email:yuanye.chi@jax.org
Phone:3395456866

Subject:

Subject ID:SU004076
Subject Type:Cultured cells
Subject Species:Homo sapiens
Taxonomy ID:9606

Factors:

Subject type: Cultured cells; Subject species: Homo sapiens (Factor headings shown in green)

mb_sample_id local_sample_id Sample source Harvest
SA448917Pool_12C13C_DnHz_Biologicalreplicate_1_analyticalreplicate_3_08132024_SZ_86Pool_12C13C Pellet
SA448918Pool_12C13C_DnHz_Biologicalreplicate_1_analyticalreplicate_3_08152024_SZ_86Pool_12C13C Pellet
SA448919Pool_12C13C_DnHz_Biologicalreplicate_1_analyticalreplicate_2_08132024_SZ_42Pool_12C13C Pellet
SA448920Pool_12C13C_DnHz_Biologicalreplicate_2_analyticalreplicate_3_08152024_SZ_75Pool_12C13C Pellet
SA448921Pool_12C13C_DnHz_Biologicalreplicate_3_analyticalreplicate_2_08132024_SZ_53Pool_12C13C Pellet
SA448922Pool_12C13C_DnHz_Biologicalreplicate_2_analyticalreplicate_2_08152024_SZ_64Pool_12C13C Pellet
SA448923Pool_12C13C_DnHz_Biologicalreplicate_2_analyticalreplicate_2_08132024_SZ_64Pool_12C13C Pellet
SA448924Pool_12C13C_DnHz_Biologicalreplicate_3_analyticalreplicate_2_08152024_SZ_53Pool_12C13C Pellet
SA448925Pool_12C13C_DnCl_Biologicalreplicate_3_analyticalreplicate_3_08192024_SZ_97Pool_12C13C Pellet
SA448926Pool_12C13C_DnHz_Biologicalreplicate_2_analyticalreplicate_3_08132024_SZ_75Pool_12C13C Pellet
SA448927Pool_12C13C_DnHz_Biologicalreplicate_2_analyticalreplicate_1_08152024_SZ_31Pool_12C13C Pellet
SA448928Pool_12C13C_DnHz_Biologicalreplicate_1_analyticalreplicate_1_08152024_SZ_20Pool_12C13C Pellet
SA448929Pool_12C13C_DnHz_Biologicalreplicate_3_analyticalreplicate_3_08152024_SZ_97Pool_12C13C Pellet
SA448930Pool_12C13C_DnCl_Biologicalreplicate_1_analyticalreplicate_3_08192024_SZ_86Pool_12C13C Pellet
SA448931Pool_12C13C_DnHz_Biologicalreplicate_3_analyticalreplicate_3_08132024_SZ_97Pool_12C13C Pellet
SA448932Pool_12C13C_DnHz_Biologicalreplicate_3_analyticalreplicate_1_08152024_SZ_08Pool_12C13C Pellet
SA448933Pool_12C13C_DnCl_Biologicalreplicate_1_analyticalreplicate_3_08212024_SZ_86Pool_12C13C Pellet
SA448934Pool_12C13C_DnCl_Biologicalreplicate_2_analyticalreplicate_3_08192024_SZ_75Pool_12C13C Pellet
SA448935Pool_12C13C_DnCl_Biologicalreplicate_3_analyticalreplicate_1_08192024_SZ_08Pool_12C13C Pellet
SA448936Pool_12C13C_DnCl_Biologicalreplicate_1_analyticalreplicate_1_08192024_SZ_20Pool_12C13C Pellet
SA448937Pool_12C13C_DnCl_Biologicalreplicate_2_analyticalreplicate_1_08192024_SZ_31Pool_12C13C Pellet
SA448938Pool_12C13C_DnCl_Biologicalreplicate_2_analyticalreplicate_2_08192024_SZ_64Pool_12C13C Pellet
SA448939Pool_12C13C_DnCl_Biologicalreplicate_1_analyticalreplicate_2_08192024_SZ_42Pool_12C13C Pellet
SA448940Pool_12C13C_DnCl_Biologicalreplicate_3_analyticalreplicate_2_08192024_SZ_53Pool_12C13C Pellet
SA448941Pool_12C13C_DnHz_Biologicalreplicate_2_analyticalreplicate_1_08132024_SZ_31Pool_12C13C Pellet
SA448942Pool_12C13C_DnHz_Biologicalreplicate_1_analyticalreplicate_2_08152024_SZ_42Pool_12C13C Pellet
SA448943Pool_12C13C_DnCl_Biologicalreplicate_3_analyticalreplicate_2_08212024_SZ_53Pool_12C13C Pellet
SA448944Pool_12C13C_DnCl_Biologicalreplicate_1_analyticalreplicate_2_08212024_SZ_42Pool_12C13C Pellet
SA448945Pool_12C13C_DnCl_Biologicalreplicate_2_analyticalreplicate_2_08212024_SZ_64Pool_12C13C Pellet
SA448946Pool_12C13C_DnCl_Biologicalreplicate_1_analyticalreplicate_1_08212024_SZ_20Pool_12C13C Pellet
SA448947Pool_12C13C_DnCl_Biologicalreplicate_2_analyticalreplicate_1_08212024_SZ_31Pool_12C13C Pellet
SA448948Pool_12C13C_DnHz_Biologicalreplicate_3_analyticalreplicate_1_08132024_SZ_08Pool_12C13C Pellet
SA448949Pool_12C13C_DnCl_Biologicalreplicate_3_analyticalreplicate_1_08212024_SZ_08Pool_12C13C Pellet
SA448950Pool_12C13C_DnCl_Biologicalreplicate_3_analyticalreplicate_3_08212024_SZ_97Pool_12C13C Pellet
SA448951Pool_12C13C_DnHz_Biologicalreplicate_1_analyticalreplicate_1_08132024_SZ_20Pool_12C13C Pellet
SA448952Pool_12C13C_DnCl_Biologicalreplicate_2_analyticalreplicate_3_08212024_SZ_75Pool_12C13C Pellet
SA448953Pool_12C13C_DnHz_Biologicalreplicate_3_analyticalreplicate_1_07312024_SZ_08Pool_12C13C Supernatant
SA448954Pool_12C13C_DnCl_Biologicalreplicate_3_analyticalreplicate_3_08062024_SZ_97Pool_12C13C Supernatant
SA448955Pool_12C13C_DnHz_Biologicalreplicate_2_analyticalreplicate_1_08032024_SZ_31Pool_12C13C Supernatant
SA448956Pool_12C13C_DnHz_Biologicalreplicate_2_analyticalreplicate_2_07312024_SZ_64Pool_12C13C Supernatant
SA448957Pool_12C13C_DnHz_Biologicalreplicate_2_analyticalreplicate_3_07312024_SZ_75Pool_12C13C Supernatant
SA448958Pool_12C13C_DnCl_Biologicalreplicate_3_analyticalreplicate_3_08092024_SZ_97Pool_12C13C Supernatant
SA448959Pool_12C13C_DnHz_Biologicalreplicate_1_analyticalreplicate_2_08032024_SZ_42Pool_12C13C Supernatant
SA448960Pool_12C13C_DnHz_Biologicalreplicate_1_analyticalreplicate_3_07312024_SZ_86Pool_12C13C Supernatant
SA448961Pool_12C13C_DnHz_Biologicalreplicate_1_analyticalreplicate_1_07312024_SZ_20Pool_12C13C Supernatant
SA448962Pool_12C13C_DnHz_Biologicalreplicate_1_analyticalreplicate_3_08032024_SZ_86Pool_12C13C Supernatant
SA448963Pool_12C13C_DnHz_Biologicalreplicate_3_analyticalreplicate_3_08032024_SZ_97Pool_12C13C Supernatant
SA448964Pool_12C13C_DnHz_Biologicalreplicate_2_analyticalreplicate_1_07312024_SZ_31Pool_12C13C Supernatant
SA448965Pool_12C13C_DnCl_Biologicalreplicate_1_analyticalreplicate_3_08092024_SZ_86Pool_12C13C Supernatant
SA448966Pool_12C13C_DnHz_Biologicalreplicate_3_analyticalreplicate_2_08032024_SZ_53Pool_12C13C Supernatant
SA448967Pool_12C13C_DnHz_Biologicalreplicate_2_analyticalreplicate_3_08032024_SZ_75Pool_12C13C Supernatant
SA448968Pool_12C13C_DnHz_Biologicalreplicate_2_analyticalreplicate_2_08032024_SZ_64Pool_12C13C Supernatant
SA448969Pool_12C13C_DnHz_Biologicalreplicate_1_analyticalreplicate_1_08032024_SZ_20Pool_12C13C Supernatant
SA448970Pool_12C13C_DnCl_Biologicalreplicate_2_analyticalreplicate_1_08092024_SZ_31Pool_12C13C Supernatant
SA448971Pool_12C13C_DnCl_Biologicalreplicate_1_analyticalreplicate_3_08062024_SZ_86Pool_12C13C Supernatant
SA448972Pool_12C13C_DnCl_Biologicalreplicate_2_analyticalreplicate_2_08062024_SZ_64Pool_12C13C Supernatant
SA448973Pool_12C13C_DnCl_Biologicalreplicate_3_analyticalreplicate_2_08092024_SZ_53Pool_12C13C Supernatant
SA448974Pool_12C13C_DnCl_Biologicalreplicate_3_analyticalreplicate_2_08062024_SZ_53Pool_12C13C Supernatant
SA448975Pool_12C13C_DnCl_Biologicalreplicate_3_analyticalreplicate_1_08092024_SZ_08Pool_12C13C Supernatant
SA448976Pool_12C13C_DnCl_Biologicalreplicate_1_analyticalreplicate_2_08062024_SZ_42Pool_12C13C Supernatant
SA448977Pool_12C13C_DnCl_Biologicalreplicate_1_analyticalreplicate_2_08092024_SZ_42Pool_12C13C Supernatant
SA448978Pool_12C13C_DnCl_Biologicalreplicate_1_analyticalreplicate_1_08062024_SZ_20Pool_12C13C Supernatant
SA448979Pool_12C13C_DnHz_Biologicalreplicate_1_analyticalreplicate_2_07312024_SZ_42Pool_12C13C Supernatant
SA448980Pool_12C13C_DnCl_Biologicalreplicate_3_analyticalreplicate_1_08062024_SZ_08Pool_12C13C Supernatant
SA448981Pool_12C13C_DnCl_Biologicalreplicate_2_analyticalreplicate_2_08092024_SZ_64Pool_12C13C Supernatant
SA448982Pool_12C13C_DnCl_Biologicalreplicate_2_analyticalreplicate_3_08092024_SZ_75Pool_12C13C Supernatant
SA448983Pool_12C13C_DnCl_Biologicalreplicate_2_analyticalreplicate_3_08062024_SZ_75Pool_12C13C Supernatant
SA448984Pool_12C13C_DnHz_Biologicalreplicate_3_analyticalreplicate_1_08032024_SZ_08Pool_12C13C Supernatant
SA448985Pool_12C13C_DnHz_Biologicalreplicate_3_analyticalreplicate_3_07312024_SZ_97Pool_12C13C Supernatant
SA448986Pool_12C13C_DnCl_Biologicalreplicate_1_analyticalreplicate_1_08092024_SZ_20Pool_12C13C Supernatant
SA448987Pool_12C13C_DnCl_Biologicalreplicate_2_analyticalreplicate_1_08062024_SZ_31Pool_12C13C Supernatant
SA448988Pool_12C13C_DnHz_Biologicalreplicate_3_analyticalreplicate_2_07312024_SZ_53Pool_12C13C Supernatant
SA448989Pool_12C_DnCl_Biologicalreplicate_2_analyticalreplicate_3_08212024_SZ_74Pool_12C Pellet
SA448990Pool_12C_DnCl_Biologicalreplicate_1_analyticalreplicate_1_08192024_SZ_19Pool_12C Pellet
SA448991Pool_12C_DnCl_Biologicalreplicate_2_analyticalreplicate_2_08212024_SZ_63Pool_12C Pellet
SA448992Pool_12C_DnCl_Biologicalreplicate_1_analyticalreplicate_2_08192024_SZ_41Pool_12C Pellet
SA448993Pool_12C_DnCl_Biologicalreplicate_3_analyticalreplicate_3_08212024_SZ_96Pool_12C Pellet
SA448994Pool_12C_DnCl_Biologicalreplicate_2_analyticalreplicate_1_08192024_SZ_30Pool_12C Pellet
SA448995Pool_12C_DnCl_Biologicalreplicate_3_analyticalreplicate_1_08212024_SZ_07Pool_12C Pellet
SA448996Pool_12C_DnCl_Biologicalreplicate_3_analyticalreplicate_1_08192024_SZ_07Pool_12C Pellet
SA448997Pool_12C_DnHz_Biologicalreplicate_2_analyticalreplicate_2_08132024_SZ_63Pool_12C Pellet
SA448998Pool_12C_DnHz_Biologicalreplicate_3_analyticalreplicate_3_08152024_SZ_96Pool_12C Pellet
SA448999Pool_12C_DnHz_Biologicalreplicate_2_analyticalreplicate_1_08132024_SZ_30Pool_12C Pellet
SA449000Pool_12C_DnHz_Biologicalreplicate_1_analyticalreplicate_3_08152024_SZ_85Pool_12C Pellet
SA449001Pool_12C_DnHz_Biologicalreplicate_1_analyticalreplicate_2_08132024_SZ_41Pool_12C Pellet
SA449002Pool_12C_DnHz_Biologicalreplicate_1_analyticalreplicate_1_08132024_SZ_19Pool_12C Pellet
SA449003Pool_12C_DnHz_Biologicalreplicate_2_analyticalreplicate_3_08152024_SZ_74Pool_12C Pellet
SA449004Pool_12C_DnHz_Biologicalreplicate_3_analyticalreplicate_2_08132024_SZ_52Pool_12C Pellet
SA449005Pool_12C_DnCl_Biologicalreplicate_1_analyticalreplicate_1_08212024_SZ_19Pool_12C Pellet
SA449006Pool_12C_DnHz_Biologicalreplicate_2_analyticalreplicate_2_08152024_SZ_63Pool_12C Pellet
SA449007Pool_12C_DnHz_Biologicalreplicate_3_analyticalreplicate_2_08152024_SZ_52Pool_12C Pellet
SA449008Pool_12C_DnCl_Biologicalreplicate_3_analyticalreplicate_2_08212024_SZ_52Pool_12C Pellet
SA449009Pool_12C_DnHz_Biologicalreplicate_1_analyticalreplicate_2_08152024_SZ_41Pool_12C Pellet
SA449010Pool_12C_DnHz_Biologicalreplicate_2_analyticalreplicate_3_08132024_SZ_74Pool_12C Pellet
SA449011Pool_12C_DnCl_Biologicalreplicate_2_analyticalreplicate_1_08212024_SZ_30Pool_12C Pellet
SA449012Pool_12C_DnHz_Biologicalreplicate_2_analyticalreplicate_1_08152024_SZ_30Pool_12C Pellet
SA449013Pool_12C_DnHz_Biologicalreplicate_1_analyticalreplicate_3_08132024_SZ_85Pool_12C Pellet
SA449014Pool_12C_DnHz_Biologicalreplicate_1_analyticalreplicate_1_08152024_SZ_19Pool_12C Pellet
SA449015Pool_12C_DnHz_Biologicalreplicate_3_analyticalreplicate_3_08132024_SZ_96Pool_12C Pellet
SA449016Pool_12C_DnCl_Biologicalreplicate_1_analyticalreplicate_2_08212024_SZ_41Pool_12C Pellet
Showing page 1 of 16     Results:    1  2  3  4  5  Next  Last     Showing results 1 to 100 of 1528

Collection:

Collection ID:CO004069
Collection Summary:For the media collection, 500 µL of media was directly aspirated into 1.5 mL Eppendorf tube from each well and flash frozen with liquid nitrogen, stored immediately at -80°C.
Sample Type:iPSC cells

Treatment:

Treatment ID:TR004085
Treatment Summary:KOLF2.2J cells were passaged as single cells with Accutase and seeded onto SynthemaxII coated 12-well plates at 10k cells per well. 24 h after cell passage, StemFlex media was changed to trophectoderm induction media (TE media). Basal TE media consists of DMEM/F12, supplemented with 20% KnockOut Serum (ThermoFisher, #10828028), 2 mM L-Glutamine (Gibco™, #25030081), 1x MEM non-essential amnio acid (GibcoTM, #11140050), 0.1 mM β-Mercaptoethanol (Sigma, #3148). In addition, 100 ng/ml BMP4 (R&D, #314-BP- 050/CF), and 20 μM SU5402 (Millipore Sigma, # 57263) were added at day 0 and onwards to induce trophoblast lineage (BS condition). For the induction of primitive syncytium, 1 mM A-83 (TOCRIS, #2939) was added at the end of Day 2. Media was refreshed every 2 days until the end of differentiation (Day 6). On day 6, TE media was replaced by the StemFlex media with or without addition of nutrients 24 hours prior to collection.

Sample Preparation:

Sampleprep ID:SP004082
Sampleprep Summary:See from protocol file.
Sampleprep Protocol Filename:DnCl_Protocol_one_phase_extraction_SZ_05132025.pdf
DnHz_Protocol_one_phase_extraction_SZ_05132025.pdf
OnePhaseSupernatant_Protocol_SZ_05132025.pdf
OnePhaseCellPellet_Protocol_SZ_05132025.pdf

Chromatography:

Chromatography ID:CH004915
Chromatography Summary:See protocol file
Methods Filename:Regular_LC_MS_Protocol_SZ_05132025.pdf
Instrument Name:Thermo Vanquish Duo UHPLC
Column Name:Thermo Accucore HILIC (100 x 2.1 mm, 2.6 µm)
Column Temperature:45°C
Flow Gradient:0.0min: 100%A, 0.2min: 2% A, 8.75min: 2%A, 10min: 100%A, 15min: 100%A, 17min: 100%A
Flow Rate:0.55 mL/min
Solvent A:95% acetonitrile/5% water; 10mM ammonium acetate; 0.1% acetic acid
Solvent B:50% acetonitrile/50% water; 10mM ammonium acetate; 0.1% acetic acid
Chromatography Type:HILIC
  
Chromatography ID:CH004916
Chromatography Summary:See protocol file
Methods Filename:Regular_LC_MS_Protocol_SZ_05132025.pdf
Instrument Name:Thermo Vanquish
Column Name:Thermo Hypersil GOLD RP C18 (50 x 2.1 mm, 3 µm)
Column Temperature:45°C
Flow Gradient:0.0min: 85%A, 0.01min: 70%A, 2.01min: 52%A, 2.51min: 18%A, 11.0min: 1%A, 11.5min: 1%A, 12.0min: 1%A, 15.0min: 0%A, 16.5min: 85%A, 17.5min: 85%A
Flow Rate:0.4 mL/min
Solvent A:100% water; 0.1% formic acid
Solvent B:100% acetonitrile; 0.1% formic acid
Chromatography Type:Reversed phase
  
Chromatography ID:CH004917
Chromatography Summary:See protocol file
Methods Filename:DnCl_DnHZ_LC_MS_Protocol_SZ_05132025.pdf
Instrument Name:Thermo Vanquish
Column Name:Waters ACQUITY UPLC CSH C18 (100 x 2.1 mm, 1.7 µm)
Column Temperature:45°C
Flow Gradient:0.0min: 100%B, 3.0min: 100%B, 16.0min: 65%B, 18.0min: 100%B, 21.0min: 100%B, 21.5min: 0%B, 26.0min: 0%B.
Flow Rate:0.4 mL/min
Solvent A:95% water/5% acetonitrile; 0.1% Formic acid
Solvent B:100% acetonitrile; 0.1% Formic acid (v/v)
Chromatography Type:Reversed phase
  
Chromatography ID:CH004918
Chromatography Summary:See protocol file
Methods Filename:DnCl_DnHZ_LC_MS_Protocol_SZ_05132025.pdf
Instrument Name:Thermo Vanquish
Column Name:Waters ACQUITY UPLC CSH C18 (100 x 2.1 mm, 1.7 µm)
Column Temperature:45°C
Flow Gradient:0.0min: 100%B, 3.0min: 100%B, 16.0min: 65%B, 18.0min: 100%B, 21.0min: 100%B, 21.5min: 0%B, 26.0min: 0%B.
Flow Rate:0.4 mL/min
Solvent A:95% water/5% acetonitrile; 0.1% Formic acid
Solvent B:100% acetonitrile; 0.1% Formic acid (v/v)
Chromatography Type:Reversed phase

Analysis:

Analysis ID:AN006469
Analysis Type:MS
Analysis Protocol File:Regular_LC_MS_Protocol_SZ_05132025.pdf
Chromatography ID:CH004915
Has Mz:1
Has Rt:1
Rt Units:Seconds
Results File:ST003940_AN006469_Results.txt
Units:peak intensity
  
Analysis ID:AN006470
Analysis Type:MS
Analysis Protocol File:Regular_LC_MS_Protocol_SZ_05132025.pdf
Chromatography ID:CH004915
Has Mz:1
Has Rt:1
Rt Units:Seconds
Results File:ST003940_AN006470_Results.txt
Units:peak intensity
  
Analysis ID:AN006471
Analysis Type:MS
Analysis Protocol File:Regular_LC_MS_Protocol_SZ_05132025.pdf
Chromatography ID:CH004916
Has Mz:1
Has Rt:1
Rt Units:Seconds
Results File:ST003940_AN006471_Results.txt
Units:peak intensity
  
Analysis ID:AN006472
Analysis Type:MS
Analysis Protocol File:Regular_LC_MS_Protocol_SZ_05132025.pdf
Chromatography ID:CH004916
Has Mz:1
Has Rt:1
Rt Units:Seconds
Results File:ST003940_AN006472_Results.txt
Units:peak intensity
  
Analysis ID:AN006473
Analysis Type:MS
Analysis Protocol File:DnCl_DnHZ_LC_MS_Protocol_SZ_05132025.pdf
Chromatography ID:CH004917
Has Mz:1
Has Rt:1
Rt Units:Seconds
Results File:ST003940_AN006473_Results.txt
Units:peak intensity
  
Analysis ID:AN006474
Analysis Type:MS
Analysis Protocol File:DnCl_DnHZ_LC_MS_Protocol_SZ_05132025.pdf
Chromatography ID:CH004917
Has Mz:1
Has Rt:1
Rt Units:Seconds
Results File:ST003940_AN006474_Results.txt
Units:peak intensity
  
Analysis ID:AN006475
Analysis Type:MS
Analysis Protocol File:DnCl_DnHZ_LC_MS_Protocol_SZ_05132025.pdf
Chromatography ID:CH004918
Has Mz:1
Has Rt:1
Rt Units:Seconds
Results File:ST003940_AN006475_Results.txt
Units:peak intensity
  
Analysis ID:AN006476
Analysis Type:MS
Analysis Protocol File:DnCl_DnHZ_LC_MS_Protocol_SZ_05132025.pdf
Chromatography ID:CH004918
Has Mz:1
Has Rt:1
Rt Units:Seconds
Results File:ST003940_AN006476_Results.txt
Units:peak intensity
  logo