List of Studies ( Metabolite:Ala-Asn)
| Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Analysis Type |
|---|---|---|---|---|---|---|---|
| ST003778 | AN006205 | Human to mouse microbiota transfer model demonstrates disease-modifying effects of the short-chain fatty acid biotherapy modified microbiota | Feces | Mouse | Diabetes | University of Queensland | LC-MS |
| ST003655 | AN006005 | Bacteria-derived 3-hydroxydodecanoic acid induces a potent anti-tumor immune response via GPR84 receptor | Blood | Human | Cancer | Universitätsspital Zürich | MALDI-MS |
| ST003655 | AN006005 | Bacteria-derived 3-hydroxydodecanoic acid induces a potent anti-tumor immune response via GPR84 receptor | Blood | Mouse | Cancer | Universitätsspital Zürich | MALDI-MS |
| ST003144 | AN005159 | On-target, dual aminopeptidase inhibition provides cross-species antimalarial activity | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST003065 | AN005021 | Investigative needle core biopsies for multi-omics in Glioblastoma | Brain | Human | Cancer | Brigham and Women's Hospital | MALDI-MS |
| ST003036 | AN004978 | Identifying and mathematically modeling the time-course of extracellular metabolic markers associated with resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa - Part 2 | Bacterial cells | Pseudomonas aeruginosa | Bacterial infection | Monash Institute of Pharmaceutical Sciences | LC-MS |
| ST002926 | AN004798 | Multi-“omics” analysis reveals the orphan P. falciparum protein kinase PfPK8 regulates multi-gene family expression | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides fragilis | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides thetaiotaomicron | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides uniformis | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Blautia producta | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium clostridioforme | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hathewayi | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hylemonae | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium scindens | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium symbiosum | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecalis | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecium | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus hirae | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Escherichia fergusonii | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Flavonifractor plautii | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Parabacteroides distasonis | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides fragilis | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides thetaiotaomicron | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides uniformis | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Blautia producta | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium clostridioforme | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hathewayi | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hylemonae | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium scindens | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium symbiosum | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecalis | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecium | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus hirae | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Escherichia fergusonii | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Flavonifractor plautii | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Parabacteroides distasonis | Stanford University | LC-MS | |
| ST002792 | AN004542 | Chemoproteomics validates selective targeting of Plasmodium M1 alanyl aminopeptidase as a cross-species strategy to treat malaria | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST002775 | AN004517 | Zebrafish Retina Regeneration Metabolomics - 3 Days Post Crush | Eye tissue | Zebrafish | Eye disease | University of Miami | LC-MS |
| ST002407 | AN003924 | Spatial, temporal, and inter-subject variation of the metabolome along the human upper intestinal tract | Intestine | Human | University of California, Davis | LC-MS | |
| ST002309 | AN003771 | Targeting malaria parasites with novel derivatives of azithromycin | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST002108 | AN003448 | Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 3) | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST002107 | AN003446 | Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 2) | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST002106 | AN003445 | Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 1) | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST001794 | AN002911 | Metabolomics Analysis of Time-Series Gastrointestinal Lumen Samples | Jejunum | Human | University of California, Davis | LC-MS | |
| ST001315 | AN002189 | Retargeting azithromycin-like compounds as antimalarials with dual modality | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |