Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:Ala-Ser)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteAnalysis Type
ST004389 AN007333 Longitudinal Multi-omics Profiling Reveals Different Adaptation to Heat Stress in Genomically Divergent Lactating Sows Feces Pig Environmental stress North Carolina State University LC-MS
ST004389 AN007333 Longitudinal Multi-omics Profiling Reveals Different Adaptation to Heat Stress in Genomically Divergent Lactating Sows Milk Pig Environmental stress North Carolina State University LC-MS
ST004301 AN007163 Metabolomic profiling of three native North American ash trees (Fraxinus spp.) and their relationship to the Emerald ash borer (Agrilus planipennis) infestation Plant tissues Green ash, Black ash, White ash Parasitic infestation Cornell University LC-MS
ST004291 AN007136 Metabolomics analysis of Plasmodium falciparum asexual-stage parasites treated with plasmepsin V peptidomimetics - 16 hour treatment Blood Plasmodium falciparum Malaria Monash University LC-MS
ST003790 AN006230 Fecal metabolomics of B16-OVA tumor-bearing mice fed chow or low and high fiber purified diets and treated with isotype control or anti-PD-1 antibody Feces Mouse Cancer Princeton University LC-MS
ST003768 AN006185 The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass Leaf Grass Hunan Agricultural University LC-MS
ST003768 AN006185 The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass Roots Grass Hunan Agricultural University LC-MS
ST003655 AN006005 Bacteria-derived 3-hydroxydodecanoic acid induces a potent anti-tumor immune response via GPR84 receptor Blood Human Cancer Universitätsspital Zürich MALDI-MS
ST003655 AN006005 Bacteria-derived 3-hydroxydodecanoic acid induces a potent anti-tumor immune response via GPR84 receptor Blood Mouse Cancer Universitätsspital Zürich MALDI-MS
ST003565 AN005858 Metaboloomics analysis of the antimalarial compound WEHI-1888504 (aka compound 59) in Plasmodium falciparum (3D7) infected red blood cells Cultured cells Plasmodium falciparum Malaria Monash University LC-MS
ST003521 AN005783 Metabolic Profiling Unveils Enhanced Antibacterial Synergy of Polymyxin B and Teixobactin against Multi-Drug Resistant Acinetobacter baumannii Bacterial cells Acinetobacter baumannii Bacterial infection Monash University LC-MS
ST003179 AN005222 Property and Activity Refinement of Dihydroquinazolinone-3-carboxamides as Orally Efficacious Antimalarials that Target PfATP4 Plasmodium cells Plasmodium falciparum Malaria Monash University LC-MS
ST003160 AN005184 New class of heterospirocyclic compounds present strong and rapid activity against artemisinin- and multidrug-resistant P. falciparum parasites Plasmodium cells Plasmodium falciparum Malaria Monash University LC-MS
ST003036 AN004977 Identifying and mathematically modeling the time-course of extracellular metabolic markers associated with resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa - Part 2 Bacterial cells Pseudomonas aeruginosa Bacterial infection Monash Institute of Pharmaceutical Sciences LC-MS
ST003036 AN004978 Identifying and mathematically modeling the time-course of extracellular metabolic markers associated with resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa - Part 2 Bacterial cells Pseudomonas aeruginosa Bacterial infection Monash Institute of Pharmaceutical Sciences LC-MS
ST003024 AN004959 Identifying and mathematically modeling the time-course of extracellular metabolic markers associated with resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa - Part 1 Bacterial cells Pseudomonas aeruginosa Monash Institute of Pharmaceutical Sciences LC-MS
ST002977 AN004888 Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant Feces Human University of Michigan LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University LC-MS
ST002747 AN004454 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Human CZ Biohub LC-MS
ST002747 AN004454 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Rickettsia parkeri CZ Biohub LC-MS
ST002698 AN004372 Systemic host inflammation induces stage-specific transcriptomic modification and slower maturation in malaria parasites Infected Red Blood Cells Plasmodium berghei Malaria Peter Doherty Institute for Infection and Immunity LC-MS
ST002438 AN003975 Ozone alters glycosphingolipid metabolism and exacerbates characteristics of asthma in mice Lung Mouse Asthma University of California, Davis LC-MS
ST002407 AN003924 Spatial, temporal, and inter-subject variation of the metabolome along the human upper intestinal tract Intestine Human University of California, Davis LC-MS
ST002263 AN003697 Intermittent fasting induces rapid hepatocyte proliferation to maintain the hepatostat Liver Mouse Stanford University LC-MS
ST002108 AN003449 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 3) Blood Plasmodium falciparum Malaria Monash University LC-MS
ST002107 AN003446 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 2) Blood Plasmodium falciparum Malaria Monash University LC-MS
ST002107 AN003447 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 2) Blood Plasmodium falciparum Malaria Monash University LC-MS
ST002106 AN003445 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 1) Blood Plasmodium falciparum Malaria Monash University LC-MS
ST002104 AN003439 Chemoresistant Cancer Cell Lines are Characterized by Migratory, Amino Acid Metabolism, Protein Catabolism and IFN1 Signalling Perturbations Cultured cells Human Cancer Future Industries Institute LC-MS
ST002010 AN003276 Chemoresistant Ovarian Cancer Global Metabolomics Cultured cells Human Cancer University of South Australia LC-MS
ST001888 AN003057 A Metabolome Atlas of the Aging Mouse Brain (Study part II) Brain Mouse University of California, Davis GC-MS/LC-MS
ST001794 AN002912 Metabolomics Analysis of Time-Series Gastrointestinal Lumen Samples Jejunum Human University of California, Davis LC-MS
ST001745 AN002838 Metabolomic profiling of the rat hippocampus across developmental ages and after learning Brain Rat New York University LC-MS
ST001658 AN002706 Control of Topoisomerase II Activity and Chemotherapeutic Inhibition by TCA Cycle Metabolites Yeast cells Saccharomyces cerevisiae Cancer Johns Hopkins University LC-MS
ST001658 AN002708 Control of Topoisomerase II Activity and Chemotherapeutic Inhibition by TCA Cycle Metabolites Yeast cells Saccharomyces cerevisiae Cancer Johns Hopkins University LC-MS
ST001637 AN002675 A Metabolome Atlas of the Aging Mouse Brain Brain Mouse University of California, Davis GC-MS/LC-MS
ST001547 AN002577 β-Adrenergic regulation of metabolism in macrophages Macrophages Human Monash University LC-MS
ST001324 AN002202 Metabolomics Adaptation of Juvenile Pacific Abalone Haliotis discus hannai to Heat Stress Hepatopancreas Pacific Abalone Institute of Oceanology, Chinese Academy of Sciences LC-MS
ST001304 AN002173 Multi-omics analysis delineates the distinct functions of sub-cellular acetyl-CoA pools in Toxoplasma gondii Fibroblast cells Toxoplasma gondii Parasitic infection Monash University LC-MS
ST001205 AN002007 Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites Cultured cells Human Malaria Monash University LC-MS
ST001205 AN002007 Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University LC-MS
ST001204 AN002005 Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Human Malaria Monash University LC-MS
ST001204 AN002005 Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University LC-MS
ST001202 AN002000 Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites Cultured cells Human Malaria Monash University LC-MS
ST001202 AN002000 Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University LC-MS
ST001033 AN001694 Determination of mode of action of anti-malalrial drugs using untargeted metabolomics Cultured cells Plasmodium falciparum Malaria Monash University LC-MS
ST000546 AN000833 Multi-omics based identification of specific biochemical changes associated with PfKelch13-mutant artemisinin resistant Plasmodium Cells Plasmodium falciparum Malaria Monash University LC-MS
  logo