List of Studies ( Metabolite:Asp-Pro)
| Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Analysis Type |
|---|---|---|---|---|---|---|---|
| ST004377 | AN007313 | Metabolomic analysis of WT and TRAP1 KO HEK293 cells in the presence or absence of the mitochondrial Hsp90 inhibitor Gamitrinib-TPP. | Cultured cells | Human | Cancer | SUNY Upstate Medical University | LC-MS |
| ST004291 | AN007135 | Metabolomics analysis of Plasmodium falciparum asexual-stage parasites treated with plasmepsin V peptidomimetics - 16 hour treatment | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST004290 | AN007133 | Metabolomics characterisation of Plasmodium falciparum response to plasmepsin V peptidomimetic inhibitors - 5 hour treatment | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST004274 | AN007113 | Loss of vitamin C biosynthesis protects from the pathology of a Schistosome infection and egg production. | Whole worm lysate | Worm | Schistosomiasis | University of Texas Southwestern Medical Center at Dallas | LC-MS |
| ST004194 | AN006966 | PfK13-associated artemisinin resistance slows drug activation and enhances antioxidant defence, which can be overcome with sulforaphane | Cultured cells | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST004189 | AN007233 | Discovery and Validation of Metabolic Biomarkers for 'Liver Qi Stagnation' and 'Liver-Gallbladder Damp-Heat' Syndromes in Cholelithiasis: Urine untargeted | Urine | Human | Gallstones | First Affiliated Hospital of Dalian Medical University | LC-MS |
| ST004153 | AN006894 | Multi-omics Study of Small Intestine Adaptation After Total Colectomy in a Rat model | Feces | Rat | Shanghai Jiao Tong University | LC-MS | |
| ST004153 | AN006895 | Multi-omics Study of Small Intestine Adaptation After Total Colectomy in a Rat model | Feces | Rat | Shanghai Jiao Tong University | LC-MS | |
| ST003911 | AN006421 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 4 | Bacterial cells | Eggerthella lenta | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003911 | AN006421 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 4 | Bacterial cells | Fusobacterium nucleatum | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003910 | AN006418 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. | Bacterial cells | Bifidobacteria | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003910 | AN006418 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. | Bacterial cells | Clostridium | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003910 | AN006418 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. | Bacterial cells | Escherichia coli | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003910 | AN006418 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. | Bacterial cells | Streptococcus | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003848 | AN006323 | Occurrence of white flesh color and refreshing flavor following phytoene synthase 2A gene variation in loquat fruit | Fruit | Loquat | Fujian Academy of Agricultural Science | LC-MS | |
| ST003799 | AN006244 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 2. | Cultured cells | Dorea longicatena | Colitis | Broad Institute of MIT and Harvard | LC-MS |
| ST003712 | AN006092 | ndufs2-/- mitochondrial Leigh syndrome zebrafish model has shortened lifespan, morphologic anomalies, and altered one-carbon metabolism | Larvae | Zebrafish | Mitochondrial disease | Children's Hospital of Philadelphia | LC-MS |
| ST003521 | AN005782 | Metabolic Profiling Unveils Enhanced Antibacterial Synergy of Polymyxin B and Teixobactin against Multi-Drug Resistant Acinetobacter baumannii | Bacterial cells | Acinetobacter baumannii | Bacterial infection | Monash University | LC-MS |
| ST003408 | AN005592 | Untargeted analysis of urine samples in a Longitudinal analysis of environmental exposures in pregnancy. | Urine | Human | Baylor College of Medicine | LC-MS | |
| ST003356 | AN005497 | Noninvasive multiomic measurement of cell type repertoires in human urine | Urine | Human | Urinary tract infection | CZ Biohub | LC-MS |
| ST003356 | AN005498 | Noninvasive multiomic measurement of cell type repertoires in human urine | Urine | Human | Urinary tract infection | CZ Biohub | LC-MS |
| ST003160 | AN005184 | New class of heterospirocyclic compounds present strong and rapid activity against artemisinin- and multidrug-resistant P. falciparum parasites | Plasmodium cells | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST003144 | AN005159 | On-target, dual aminopeptidase inhibition provides cross-species antimalarial activity | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST003053 | AN005006 | Providing insight into the mechanism of action of Cationic Lipidated Oligomers (CLOs) using metabolomics | Bacterial cells | Staphylococcus aureus | Bacterial infection | Monash University | LC-MS |
| ST003053 | AN005007 | Providing insight into the mechanism of action of Cationic Lipidated Oligomers (CLOs) using metabolomics | Bacterial cells | Staphylococcus aureus | Bacterial infection | Monash University | LC-MS |
| ST003036 | AN004977 | Identifying and mathematically modeling the time-course of extracellular metabolic markers associated with resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa - Part 2 | Bacterial cells | Pseudomonas aeruginosa | Bacterial infection | Monash Institute of Pharmaceutical Sciences | LC-MS |
| ST003024 | AN004959 | Identifying and mathematically modeling the time-course of extracellular metabolic markers associated with resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa - Part 1 | Bacterial cells | Pseudomonas aeruginosa | Monash Institute of Pharmaceutical Sciences | LC-MS | |
| ST002926 | AN004798 | Multi-“omics” analysis reveals the orphan P. falciparum protein kinase PfPK8 regulates multi-gene family expression | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides fragilis | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides thetaiotaomicron | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides uniformis | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Blautia producta | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium clostridioforme | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hathewayi | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hylemonae | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium scindens | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium symbiosum | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecalis | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecium | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus hirae | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Escherichia fergusonii | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Flavonifractor plautii | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Parabacteroides distasonis | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides fragilis | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides thetaiotaomicron | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides uniformis | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Blautia producta | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium clostridioforme | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hathewayi | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hylemonae | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium scindens | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium symbiosum | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecalis | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecium | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus hirae | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Escherichia fergusonii | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Flavonifractor plautii | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Parabacteroides distasonis | Stanford University | LC-MS | |
| ST002792 | AN004542 | Chemoproteomics validates selective targeting of Plasmodium M1 alanyl aminopeptidase as a cross-species strategy to treat malaria | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST002776 | AN004519 | Zebrafish Optic Nerve Regeneration, Tectum Metabolomics - 3 Days Post Crush | Eye tissue | Zebrafish | Eye disease | University of Miami | LC-MS |
| ST002775 | AN004517 | Zebrafish Retina Regeneration Metabolomics - 3 Days Post Crush | Eye tissue | Zebrafish | Eye disease | University of Miami | LC-MS |
| ST002747 | AN004454 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Human | CZ Biohub | LC-MS | |
| ST002747 | AN004454 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Rickettsia parkeri | CZ Biohub | LC-MS | |
| ST002551 | AN004200 | Metabolomics dataset of CNTF induced axon regeneration in mice post optic nerve crush | Eye tissue | Mouse | Eye disease | University of Miami | LC-MS |
| ST002512 | AN004136 | Gnotobiotic mice: Metabolites in intestinal contents of germ-free mice colonized with strains of gut bacterium Eggerthella lenta | Intestine | Mouse | University of California, San Francisco | LC-MS | |
| ST002512 | AN004137 | Gnotobiotic mice: Metabolites in intestinal contents of germ-free mice colonized with strains of gut bacterium Eggerthella lenta | Intestine | Mouse | University of California, San Francisco | LC-MS | |
| ST002477 | AN004046 | Neutrophil metabolomics in COVID-19 | Neutrophils | Human | COVID-19 | UT Southwestern Medical Center | LC-MS |
| ST002412 | AN003931 | Metabolic effects of the protein kinase R | Macrophages | Mouse | Hudson Institute of Medical Research | LC-MS | |
| ST002407 | AN003924 | Spatial, temporal, and inter-subject variation of the metabolome along the human upper intestinal tract | Intestine | Human | University of California, Davis | LC-MS | |
| ST002405 | AN003919 | Stool global metabolite levels in peanut allergy (Part 2) | Feces | Human | Peanut allergy | Icahn School of Medicine at Mount Sinai | LC-MS |
| ST002309 | AN003771 | Targeting malaria parasites with novel derivatives of azithromycin | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST002247 | AN003670 | Microbiota and Health Study (Dhaka, Bangladesh) | Feces | Human | Broad Institute of MIT and Harvard | LC-MS | |
| ST002231 | AN003640 | Metabolomics Analysis of HOG-EV and HOG-R132H Cells with and without BAY 2402234 Treatment | Cultured cells | Human | Cancer | UT Southwestern Medical Center | LC-MS |
| ST002108 | AN003449 | Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 3) | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST002107 | AN003446 | Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 2) | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST002106 | AN003444 | Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 1) | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST002104 | AN003439 | Chemoresistant Cancer Cell Lines are Characterized by Migratory, Amino Acid Metabolism, Protein Catabolism and IFN1 Signalling Perturbations | Cultured cells | Human | Cancer | Future Industries Institute | LC-MS |
| ST002051 | AN003338 | The apicomplexan parasite Toxoplasma gondii forms bradyzoite-containing tissue cysts that cause chronic and drug-tolerant infections. | Cultured cells | Toxoplasma gondii | Parasitic infection | Robert Koch-Institute | LC-MS |
| ST002010 | AN003276 | Chemoresistant Ovarian Cancer Global Metabolomics | Cultured cells | Human | Cancer | University of South Australia | LC-MS |
| ST001955 | AN003181 | Metabonomics analysis reveals the physiological mechanism of promoting maize shoots growth under negative pressure to stabilize soil water content | Leaf | Maize | Heilongjiang Bayi Agricultural University | APCI-MS | |
| ST001788 | AN002899 | β-Adrenergic regulation of metabolism in macrophages (part-IV) | Macrophages | Human | Monash University | LC-MS | |
| ST001782 | AN002893 | Examining the Identified Differential Metabolites in Other Antipsychotics with a High Fatality Frequency (part IV) | Blood | Mouse | Hebei medical university | LC-MS | |
| ST001781 | AN002892 | Identifying Candidate Differential Metabolites in lethal chlorpromazine poisoning Relative to non-drug related deaths (part III) | Blood | Mouse | Hebei medical university | LC-MS | |
| ST001746 | AN002842 | Examining the Identified Differential Metabolites in Other Antipsychotics with a High Fatality Frequency | Blood | Mouse | Hebei medical university | LC-MS | |
| ST001739 | AN002832 | Differential Metabolites and Disturbed Metabolic Pathways Associated with chlorpromazine Poisoning | Blood | Mouse | Hebei medical university | LC-MS | |
| ST001549 | AN002580 | β-Adrenergic regulation of metabolism in macrophages (part-III) | Macrophages | Human | Monash University | LC-MS | |
| ST001547 | AN002576 | β-Adrenergic regulation of metabolism in macrophages | Macrophages | Human | Monash University | LC-MS | |
| ST001315 | AN002189 | Retargeting azithromycin-like compounds as antimalarials with dual modality | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST001304 | AN002172 | Multi-omics analysis delineates the distinct functions of sub-cellular acetyl-CoA pools in Toxoplasma gondii | Fibroblast cells | Toxoplasma gondii | Parasitic infection | Monash University | LC-MS |
| ST001205 | AN002007 | Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites | Cultured cells | Human | Malaria | Monash University | LC-MS |
| ST001205 | AN002007 | Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites | Cultured cells | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST001204 | AN002004 | Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites | Cultured cells | Human | Malaria | Monash University | LC-MS |
| ST001204 | AN002004 | Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites | Cultured cells | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST001202 | AN002001 | Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites | Cultured cells | Human | Malaria | Monash University | LC-MS |
| ST001202 | AN002001 | Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites | Cultured cells | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST001201 | AN001999 | Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites | Cultured cells | Human | Malaria | Monash University | LC-MS |
| ST001201 | AN001999 | Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites | Cultured cells | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST001175 | AN001950 | Multi-omics analysis demonstrates unique mode of action of a potent new antimalarial compound, JPC-3210, against Plasmodium falciparum | Plasmodium cells | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST001033 | AN001694 | Determination of mode of action of anti-malalrial drugs using untargeted metabolomics | Cultured cells | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST000546 | AN000832 | Multi-omics based identification of specific biochemical changes associated with PfKelch13-mutant artemisinin resistant Plasmodium | Cells | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST000539 | AN000819 | Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes (part II) | Cells | Human | Monash University | LC-MS | |
| ST000422 | AN000668 | Type 1 Diabetes good glycemic control and controls samples | Blood | Human | Diabetes | Mayo Clinic | LC-MS |
| ST000414 | AN000655 | Metabolomics-based screening of the Malaria Box reveals both novel and established mechanisms of action | Cells | Plasmodium falciparum | Malaria | Monash Institute of Pharmaceutical Sciences | LC-MS |
| ST000403 | AN000643 | Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes | Cells | Human | Monash Institute of Pharmaceutical Sciences | LC-MS |