List of Studies ( Metabolite:Blasticidin S)
| Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Analysis Type |
|---|---|---|---|---|---|---|---|
| ST004294 | AN007140 | Investigation on the spaceflight-induced phenotypic changes and potential mechanisms of Bacillus Licheniformis | Bacterial cells | Bacillus licheniformis | Beijing Institute of Technology | LC-MS | |
| ST004207 | AN006997 | Tumour sampling conditions perturb the metabolic landscape of clear cell renal cell carcinoma | Kidney | Human, Mouse | Cancer | University of Cambridge | LC-MS |
| ST004194 | AN006967 | PfK13-associated artemisinin resistance slows drug activation and enhances antioxidant defence, which can be overcome with sulforaphane | Cultured cells | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST004153 | AN006894 | Multi-omics Study of Small Intestine Adaptation After Total Colectomy in a Rat model | Feces | Rat | Shanghai Jiao Tong University | LC-MS | |
| ST003877 | AN006369 | Intestinal permeability of N-acetylcysteine is driven by gut microbiota-dependent cysteine palmitoylation | Intestinal fluid | Rat | Peking University | LC-MS | |
| ST003768 | AN006185 | The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass | Leaf | Grass | Hunan Agricultural University | LC-MS | |
| ST003768 | AN006185 | The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass | Roots | Grass | Hunan Agricultural University | LC-MS | |
| ST003768 | AN006186 | The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass | Leaf | Grass | Hunan Agricultural University | LC-MS | |
| ST003768 | AN006186 | The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass | Roots | Grass | Hunan Agricultural University | LC-MS | |
| ST003736 | AN006131 | The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass (Rumex patientia L.× Rumex tianschanicus A. LOS) | Rhizosphere | Rumex patientia | Hunan Agricultural University | LC-MS | |
| ST003600 | AN005916 | Development of Food Material Source Technology for Future Alternative Meats (Including Cultured Meat) | Cultured cells | Chicken | Sangmyung University | LC-MS | |
| ST003172 | AN005206 | Untargeted Metabolomic Profile Of Chili Pepper (Capsicum Chinensed) Developmental Cycle | Capsicum Chinense | Habanero pepper | University of Alberta | LC-MS | |
| ST003160 | AN005185 | New class of heterospirocyclic compounds present strong and rapid activity against artemisinin- and multidrug-resistant P. falciparum parasites | Plasmodium cells | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST003144 | AN005160 | On-target, dual aminopeptidase inhibition provides cross-species antimalarial activity | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST003053 | AN005007 | Providing insight into the mechanism of action of Cationic Lipidated Oligomers (CLOs) using metabolomics | Bacterial cells | Staphylococcus aureus | Bacterial infection | Monash University | LC-MS |
| ST003036 | AN004978 | Identifying and mathematically modeling the time-course of extracellular metabolic markers associated with resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa - Part 2 | Bacterial cells | Pseudomonas aeruginosa | Bacterial infection | Monash Institute of Pharmaceutical Sciences | LC-MS |
| ST002926 | AN004798 | Multi-“omics” analysis reveals the orphan P. falciparum protein kinase PfPK8 regulates multi-gene family expression | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST002792 | AN004543 | Chemoproteomics validates selective targeting of Plasmodium M1 alanyl aminopeptidase as a cross-species strategy to treat malaria | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST002775 | AN004518 | Zebrafish Retina Regeneration Metabolomics - 3 Days Post Crush | Eye tissue | Zebrafish | Eye disease | University of Miami | LC-MS |
| ST002761 | AN004488 | Metabolic responses of normal rat kidneys to a high salt intake (Urine) | Urine | Rat | Medical College of Wisconsin | LC-MS | |
| ST002761 | AN004490 | Metabolic responses of normal rat kidneys to a high salt intake (Urine) | Urine | Rat | Medical College of Wisconsin | LC-MS | |
| ST002760 | AN004484 | Metabolic responses of normal rat kidneys to a high salt intake (Kidney outer medulla) | Kidney | Rat | Medical College of Wisconsin | LC-MS | |
| ST002760 | AN004486 | Metabolic responses of normal rat kidneys to a high salt intake (Kidney outer medulla) | Kidney | Rat | Medical College of Wisconsin | LC-MS | |
| ST002759 | AN004480 | Metabolic responses of normal rat kidneys to a high salt intake (Kidney cortex) | Kidney | Rat | Medical College of Wisconsin | LC-MS | |
| ST002759 | AN004482 | Metabolic responses of normal rat kidneys to a high salt intake (Kidney cortex) | Kidney | Rat | Medical College of Wisconsin | LC-MS | |
| ST002758 | AN004478 | Metabolic responses of normal rat kidneys to a high salt intake (Plasma) | Blood | Rat | Medical College of Wisconsin | LC-MS | |
| ST002576 | AN005611 | Role of environmental toxicants in obesity-related cardiovascular disease: Plasma untargeted LC-HRMS analysis (part 1 of 3) | Blood | Human | Heart disease | Boston University | LC-MS |
| ST002551 | AN004201 | Metabolomics dataset of CNTF induced axon regeneration in mice post optic nerve crush | Eye tissue | Mouse | Eye disease | University of Miami | LC-MS |
| ST002517 | AN004146 | Time course 2: Growth of Eggerthella lenta in defined media with some samples receiving 13C2 stable isotope labeled acetate (intracellular samples) | Bacterial media | Eggerthella lenta | University of California, San Francisco | LC-MS | |
| ST002516 | AN004144 | Time course 2: Growth of Eggerthella lenta in defined media with some samples receiving 13C2 stable isotope labeled acetate | Bacterial media | Eggerthella lenta | University of California, San Francisco | LC-MS | |
| ST002509 | AN004132 | Time course 1: Growth of Eggerthella lenta in defined media | Bacterial media | Eggerthella lenta | University of California, San Francisco | LC-MS | |
| ST002412 | AN003932 | Metabolic effects of the protein kinase R | Macrophages | Mouse | Hudson Institute of Medical Research | LC-MS | |
| ST002407 | AN003924 | Spatial, temporal, and inter-subject variation of the metabolome along the human upper intestinal tract | Intestine | Human | University of California, Davis | LC-MS | |
| ST002405 | AN003919 | Stool global metabolite levels in peanut allergy (Part 2) | Feces | Human | Peanut allergy | Icahn School of Medicine at Mount Sinai | LC-MS |
| ST002309 | AN003772 | Targeting malaria parasites with novel derivatives of azithromycin | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST002283 | AN003729 | The “ForensOMICS” approach to forensic post-mortem interval estimation: combining metabolomics, lipidomics and proteomics for the analysis human skeletal remains | Bone | Human | University of Central Lancashire | LC-MS | |
| ST002222 | AN003631 | Glutaminolysis contribution to the carbon backbone of aspartate and glutamate in ccRCC | Cultured cells | Human | Cancer | CECAD Research Center | LC-MS |
| ST002221 | AN003630 | Glutaminolysis contribution to the carbon backbone of aspartate through ATP Citrate Lyase (ACLY) in ccRCC | Cultured cells | Human | Cancer | CECAD Research Center | LC-MS |
| ST002199 | AN003599 | FOXA2 controls the anti-oxidant response in FH-deficient cells independent of NRF2 | Cultured cells | Mouse | Cancer | CECAD Research Center | LC-MS |
| ST002107 | AN003447 | Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 2) | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST002106 | AN003445 | Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 1) | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST002104 | AN003440 | Chemoresistant Cancer Cell Lines are Characterized by Migratory, Amino Acid Metabolism, Protein Catabolism and IFN1 Signalling Perturbations | Cultured cells | Human | Cancer | Future Industries Institute | LC-MS |
| ST002010 | AN003276 | Chemoresistant Ovarian Cancer Global Metabolomics | Cultured cells | Human | Cancer | University of South Australia | LC-MS |
| ST001788 | AN002900 | β-Adrenergic regulation of metabolism in macrophages (part-IV) | Macrophages | Human | Monash University | LC-MS | |
| ST001549 | AN002581 | β-Adrenergic regulation of metabolism in macrophages (part-III) | Macrophages | Human | Monash University | LC-MS | |
| ST001548 | AN002579 | β-Adrenergic regulation of metabolism in macrophages (part-II) | Macrophages | Human | Monash University | LC-MS | |
| ST001547 | AN002577 | β-Adrenergic regulation of metabolism in macrophages | Macrophages | Human | Monash University | LC-MS | |
| ST001315 | AN002190 | Retargeting azithromycin-like compounds as antimalarials with dual modality | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST001304 | AN002173 | Multi-omics analysis delineates the distinct functions of sub-cellular acetyl-CoA pools in Toxoplasma gondii | Fibroblast cells | Toxoplasma gondii | Parasitic infection | Monash University | LC-MS |
| ST001276 | AN002117 | Development and Characterisation of a Novel Class of Aroyl Guanidine Containing Anti-Trypanosomal Compounds | Cultured cells | Trypanosoma brucei | Sleeping sickness | Monash University | LC-MS |
| ST001274 | AN002115 | Metabolomics-based profiling of the mode of action of Pathogen Box compounds in Trypanosoma brucei (part-I) | Cultured cells | Trypanosoma brucei | Sleeping sickness | Monash University | LC-MS |
| ST001205 | AN002007 | Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites | Cultured cells | Human | Malaria | Monash University | LC-MS |
| ST001205 | AN002007 | Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites | Cultured cells | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST001204 | AN002005 | Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites | Cultured cells | Human | Malaria | Monash University | LC-MS |
| ST001204 | AN002005 | Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites | Cultured cells | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST001201 | AN001999 | Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites | Cultured cells | Human | Malaria | Monash University | LC-MS |
| ST001201 | AN001999 | Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites | Cultured cells | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST001175 | AN001951 | Multi-omics analysis demonstrates unique mode of action of a potent new antimalarial compound, JPC-3210, against Plasmodium falciparum | Plasmodium cells | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST001037 | AN001698 | High Resolution GC-MS and FID Metabolomics of Human Serum | Blood | Human | Wake Forest Baptist Medical Center | GC-MS | |
| ST000539 | AN000819 | Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes (part II) | Cells | Human | Monash University | LC-MS | |
| ST000403 | AN000643 | Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes | Cells | Human | Monash Institute of Pharmaceutical Sciences | LC-MS | |
| ST000221 | AN000329 | Normal plasma cells,Low proliferation multiple myeloma and High proliferation multiple myeloma cells | Bone marrow | Human | Cancer | Mayo Clinic | LC-MS |