List of Studies ( Metabolite:CL 18:1/18:1/18:1/18:1)
| Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Analysis Type |
|---|---|---|---|---|---|---|---|
| ST004300 | AN007153 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Brain | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004300 | AN007153 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Liver | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004300 | AN007155 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Brain | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004300 | AN007155 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Liver | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004229 | AN007040 | Aromatic Microbial Metabolite Hippuric Acid Potentiates Pro-Inflammatory Responses in Macrophages through TLR-MyD88 Signaling and Lipid Remodeling - Lipidomics analysis on bone marrow derived macrophages pre-treated with hippuric acid and stimulated with M1-like (LPS+IFNγ) | Macrophages | Mouse | Bacterial infection | The Wistar Institute | LC-MS |
| ST004223 | AN007028 | Sulfatide deficiency-induced astrogliosis and myelin lipid dyshomeostasis are independent of Trem2-mediated microglial activation | Brain | Mouse | Alzheimers disease | UT Health San Antonio | MS(Dir. Inf.) |
| ST004223 | AN007028 | Sulfatide deficiency-induced astrogliosis and myelin lipid dyshomeostasis are independent of Trem2-mediated microglial activation | Spinal cord | Mouse | Alzheimers disease | UT Health San Antonio | MS(Dir. Inf.) |
| ST004217 | AN007016 | Lipid Alterations in ASAH1-Deficient Cells: Insights into Ceramide Accumulation and Lysosomal Dysfunction | Cultured cells | Human | Metabolic disease | Harvard Medical School | LC-MS |
| ST004167 | AN006918 | Targeted Lipidomic Profiling of STBD1 Knockdown in Clear Cell Renal Carcinoma Cells | Renal cancer cells | Human | Cancer | The Affiliated Cancer Hospital of Zhengzhou University | LC-MS |
| ST004057 | AN006706 | Microglial and Non-Microglial Regulation of Lipid Metabolism in Alzheimer's Revealed by Genetic and Pharmacological Depletion | Brain | Human | Alzheimers disease | UT Health San Antonio | MS(Dir. Inf.) |
| ST004057 | AN006706 | Microglial and Non-Microglial Regulation of Lipid Metabolism in Alzheimer's Revealed by Genetic and Pharmacological Depletion | Brain | Mouse | Alzheimers disease | UT Health San Antonio | MS(Dir. Inf.) |
| ST003972 | AN006541 | Lipid cargo profiling of human brain-derived extracellular vesicles by APOE genotype in Alzheimer’s Disease | Brain | Human | Alzheimers disease | Mayo Clinic | MS(Dir. Inf.) |
| ST003758 | AN006171 | Untargeted lipidomics of gemcitabine-resistant cells | Pancreas | Human | Cancer | Victor Chang Cardiac Research Institute | LC-MS |
| ST003757 | AN006169 | Untargeted lipidomics of gemcitabine-resistant PDAC cells | Pancreas | Human | Cancer | Victor Chang Cardiac Research Institute | LC-MS |
| ST003734 | AN006127 | Altered Omega-6/Omega-3 PUFA Ratios and Phospholipid Profiles in CFTR-Mutant PANC-1 Cells Reveal Novel Links Between CFTR Function and Lipid Metabolism | Pancreas | Human | Cancer | Changhai Hospital | LC-MS |
| ST003660 | AN006011 | Kingdom-specific lipid unsaturation calibrates sequence evolution in membrane arm subunits of eukaryotic respiratory complexes | Cultured cells | Human | CSIR-Centre for Cellular & Molecular Biology | LC-MS | |
| ST003469 | AN005704 | Lipidomics of mice white adipose tissue to support understanding of early metabolic shift in presymptomatic sepsis patients. (Part14 mice white adipose tissue lipid) | Adipose tissue | Mouse | Sepsis | Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute | LC-MS |
| ST003341 | AN005476 | Untargeted Lipidomic Profiling of Canine Cancer Cell Lines | Cultured cells | Dog | Cancer | Kojin Therapeutics, Inc. | LC-MS |
| ST003328 | AN005452 | Increased Cholesterol Synthesis Drives Neurotoxicity in Patient Stem Cell-Derived Model of Multiple Sclerosis - cellular lipidomics | Stem cells | Human | Multiple sclerosis | University of Colorado Denver | LC-MS |
| ST003101 | AN005075 | Parallel pheromonal, metabolite, and lipid analyses reveal patterns associated with early life transitions and ovary activation in honey bee (Apis mellifera) queens | Bee heads | Honey bee | University of British Columbia | LC-MS | |
| ST002747 | AN004457 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Human | CZ Biohub | LC-MS | |
| ST002747 | AN004457 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Rickettsia parkeri | CZ Biohub | LC-MS | |
| ST002505 | AN004127 | A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) | Cultured cells | Human | Cancer | University of Science and Technology of China | LC-MS |
| ST002452 | AN004008 | Lipidomic analysis of human brain from frontotemporal dementia cases of with GRN and C9orf72 mutations | Brain | Human | Dementia | University of Sydney | LC-MS |
| ST002145 | AN003511 | The Carbohydrate Sensing Transcription Factor ChREBP Links Mitochondrial Lipidomes to Mitochondrial Dynamics and Progression of Diabetic Nephropathy | Cultured cells | Mouse | Diabetes | University of Texas MD Anderson Cancer Center | LC-MS |
| ST002145 | AN003512 | The Carbohydrate Sensing Transcription Factor ChREBP Links Mitochondrial Lipidomes to Mitochondrial Dynamics and Progression of Diabetic Nephropathy | Cultured cells | Mouse | Diabetes | University of Texas MD Anderson Cancer Center | LC-MS |
| ST002114 | AN003461 | Involvement of Mieap in Cardiolipin metabolism (part I-revised) | Cultured cells | Human | National Cancer Center Japan Research Institute | LC-MS | |
| ST002097 | AN003425 | Functional metabolomics-based molecular profiling of acute and chronic hepatitis (Liver Metabolomics) | Liver | Mouse | NASH | Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University | LC-MS |
| ST001989 | AN003241 | THEM6-mediated lipid remodelling sustains stress resistance in cancer (Part 3) | LNCaP cells | Human | Cancer | IGMM | LC-MS |
| ST001893 | AN003074 | Involvement of Mieap in Cardiolipin metabolism (part I) | Cultured cells | Human | National Cancer Center Japan Research Institute | LC-MS | |
| ST001106 | AN001800 | Lipidomics of Newborn Heart Tissue Exposed to Excess Maternal Cortisol in Late Gestation (part-1) | Heart | Sheep | University of Florida | LC-MS | |
| ST001061 | AN001732 | Lipidomics of Near-Term Fetal and Newborn Sheep Cardiac Tissue | Heart | Sheep | University of Florida | LC-MS | |
| ST000963 | AN001577 | Lipidomics of inflammation-induced optic nerve regeneration | Eye tissue | Rat | Eye disease | University of Miami | LC-MS |