Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:Chlorpropamide)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteUnits(range)
ST001660 AN002711 Plasmodium falciparum metabolomics as a result of treatment with putative acetyl-CoA synthetase inhibitors Cultured cells Plasmodium falciparum Malaria Pennsylvania State University Normalized and blank subtracted peak area
ST001985 AN003236 Profiling Plasmodium falciparum parasites and human red blood cells after treatment with MMV693183 Blood Human Malaria Pennsylvania State University Peak Abundance (normalized, blank subtracted, and corrected for baseline noise)
ST001985 AN003236 Profiling Plasmodium falciparum parasites and human red blood cells after treatment with MMV693183 Blood Plasmodium falciparum Malaria Pennsylvania State University Peak Abundance (normalized, blank subtracted, and corrected for baseline noise)
ST001985 AN003236 Profiling Plasmodium falciparum parasites and human red blood cells after treatment with MMV693183 Cultured cells Human Malaria Pennsylvania State University Peak Abundance (normalized, blank subtracted, and corrected for baseline noise)
ST001985 AN003236 Profiling Plasmodium falciparum parasites and human red blood cells after treatment with MMV693183 Cultured cells Plasmodium falciparum Malaria Pennsylvania State University Peak Abundance (normalized, blank subtracted, and corrected for baseline noise)
ST002024 AN003294 Plasmodium falciparum stable-isotope carbon labeling to explore metabolic consequences of keto–acid dehydrogenase disruption Cultured cells Plasmodium falciparum Malaria Pennsylvania State University Peak Abundance (normalized, blank subtracted, and corrected for baseline noise)
ST002007 AN003270 Isotope tracing analysis of stress erythroid progenitors Cultured cells Mouse Inflammation Pennsylvania State University peak area
ST002011 AN003277 The anticancer human mTOR inhibitor MLN0128/Sapanisertib with potent multistage in vitro antiplasmodium activity and in vivo antimalarial efficacy in a humanised mouse model is an inhibitor of multiple Plasmodium falciparum kinases. Blood Plasmodium falciparum Malaria Pennsylvania State University peak area
ST002011 AN003278 The anticancer human mTOR inhibitor MLN0128/Sapanisertib with potent multistage in vitro antiplasmodium activity and in vivo antimalarial efficacy in a humanised mouse model is an inhibitor of multiple Plasmodium falciparum kinases. Blood Plasmodium falciparum Malaria Pennsylvania State University peak area
ST002011 AN003279 The anticancer human mTOR inhibitor MLN0128/Sapanisertib with potent multistage in vitro antiplasmodium activity and in vivo antimalarial efficacy in a humanised mouse model is an inhibitor of multiple Plasmodium falciparum kinases. Blood Plasmodium falciparum Malaria Pennsylvania State University peak area
ST002078 AN003387 Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. Cultured cells Plasmodium falciparum Malaria Pennsylvania State University peak area
ST002078 AN003388 Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. Cultured cells Plasmodium falciparum Malaria Pennsylvania State University peak area
ST002078 AN003389 Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. Cultured cells Plasmodium falciparum Malaria Pennsylvania State University peak area
ST002078 AN003390 Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. Cultured cells Plasmodium falciparum Malaria Pennsylvania State University peak area
ST001232 AN002050 Combining stage - specificity and metabolomic profiling to advance drug discovery for malaria Cultured cells Plasmodium falciparum Malaria Pennsylvania State University Peak area
ST001299 AN002163 Metatranscriptomic Analysis of the Mouse Gut Microbiome Response to the Persistent Organic Pollutant 2,3,7,8-Tetrachlorodibenzofuran Intestine Mouse The Pennsylvania State University (Penn State) ppm
ST000046 AN000078 Identification of altered metabolic pathways in Alzheimer's disease, mild cognitive impairment and cognitively normals using Metabolomics (plasma) Blood Human Alzheimers disease Mayo Clinic Raw MS Intensities
  logo