Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:Cordycepin)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteAnalysis Type
ST004459 AN007465 Untargeted Metabolomics Reveals Tissue-Specific Metabolic Reprogramming and Adaptation Strategies in Astragalus membranaceus var. mongholicus Seedlings under Drought Stress Whole Plant Plant Yili Normal University LC-MS
ST004454 AN007458 Untargeted Metabolomics Reveals Divergent Metabolic Profiles Between the Predatory Arma chinensis and the Phytophagous Halyomorpha halys Insect tissue Arma chinensis, Halyomorpha halys Institute of Plant Protection, Chinese Academy of Agricultural Sciences LC-MS
ST004389 AN007333 Longitudinal Multi-omics Profiling Reveals Different Adaptation to Heat Stress in Genomically Divergent Lactating Sows Feces Pig Environmental stress North Carolina State University LC-MS
ST004389 AN007333 Longitudinal Multi-omics Profiling Reveals Different Adaptation to Heat Stress in Genomically Divergent Lactating Sows Milk Pig Environmental stress North Carolina State University LC-MS
ST004194 AN006966 PfK13-associated artemisinin resistance slows drug activation and enhances antioxidant defence, which can be overcome with sulforaphane Cultured cells Plasmodium falciparum Malaria Monash University LC-MS
ST004153 AN006895 Multi-omics Study of Small Intestine Adaptation After Total Colectomy in a Rat model Feces Rat Shanghai Jiao Tong University LC-MS
ST003768 AN006185 The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass Leaf Grass Hunan Agricultural University LC-MS
ST003768 AN006185 The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass Roots Grass Hunan Agricultural University LC-MS
ST003521 AN005782 Metabolic Profiling Unveils Enhanced Antibacterial Synergy of Polymyxin B and Teixobactin against Multi-Drug Resistant Acinetobacter baumannii Bacterial cells Acinetobacter baumannii Bacterial infection Monash University LC-MS
ST003036 AN004977 Identifying and mathematically modeling the time-course of extracellular metabolic markers associated with resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa - Part 2 Bacterial cells Pseudomonas aeruginosa Bacterial infection Monash Institute of Pharmaceutical Sciences LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University LC-MS
ST002759 AN004479 Metabolic responses of normal rat kidneys to a high salt intake (Kidney cortex) Kidney Rat Medical College of Wisconsin LC-MS
ST002407 AN003924 Spatial, temporal, and inter-subject variation of the metabolome along the human upper intestinal tract Intestine Human University of California, Davis LC-MS
ST002405 AN003919 Stool global metabolite levels in peanut allergy (Part 2) Feces Human Peanut allergy Icahn School of Medicine at Mount Sinai LC-MS
ST002094 AN003420 Commensal intestinal microbiota regulates host luminal proteolytic activity and intestinal barrier integrity through β-glucuronidase activity (Part 1) Feces Human Irritable bowel syndrome Mayo Clinic LC-MS
ST002094 AN003421 Commensal intestinal microbiota regulates host luminal proteolytic activity and intestinal barrier integrity through β-glucuronidase activity (Part 1) Feces Human Irritable bowel syndrome Mayo Clinic LC-MS
ST002066 AN003365 Glutaminase inhibition impairs CD8 T cell activation in STK11/Lkb1 deficient lung cancer Lung Mouse Cancer Walter and Eliza Hall Institute of Medical Research LC-MS
ST001955 AN003181 Metabonomics analysis reveals the physiological mechanism of promoting maize shoots growth under negative pressure to stabilize soil water content Leaf Maize Heilongjiang Bayi Agricultural University APCI-MS
  logo