List of Studies ( Metabolite:DG 18:1_20:2)
| Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Analysis Type |
|---|---|---|---|---|---|---|---|
| ST004300 | AN007152 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Brain | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004300 | AN007152 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Liver | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004300 | AN007154 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Brain | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004300 | AN007154 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Liver | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004039 | AN006677 | Soma to neuron communication links stress adaptation to stress avoidance behavior | Worms | C. elegans | Stress | University of Pittsburgh | LC-MS |
| ST003988 | AN006569 | Lipid and cell cycling perturbations driven by the HDAC inhibitor romidepsin render liver cancer vulnerable to RTK targeting and immunologically active | Cultured cells | Human | Cancer | CNRS | LC-MS |
| ST003760 | AN006174 | Untargeted lipidomics of combination gemcitabine/paclitaxel attenuated (CombAT) PDAC cells | Pancreas | Human | Cancer | Victor Chang Cardiac Research Institute | LC-MS |
| ST003758 | AN006170 | Untargeted lipidomics of gemcitabine-resistant cells | Pancreas | Human | Cancer | Victor Chang Cardiac Research Institute | LC-MS |
| ST003757 | AN006168 | Untargeted lipidomics of gemcitabine-resistant PDAC cells | Pancreas | Human | Cancer | Victor Chang Cardiac Research Institute | LC-MS |
| ST003703 | AN006075 | NAD Depletion in Skeletal Muscle does not Compromise Muscle Function or Accelerate Aging | Muscle | Mouse | Sarcopenia | University of Copenhagen | LC-MS |
| ST003678 | AN006039 | The effects of cystine limitation stress adaptation (CLSA) on lipidomics changes in pancreatic cancer cells | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003664 | AN006020 | Tumour interstitial fluid-enriched phosphoethanolamine suppresses T cell function. | T-cells | Mouse | Cancer | University of Chicago | LC-MS |
| ST003645 | AN005984 | Targeting the c-MYC/ELOVL6 Pathway Alters Cell Membrane Mechanics and Enhances Chemotherapeutic Efficacy in Pancreatic Cancer | Cultured cells | Human | Cancer | Universidad Francisco de Vitoria - Hospital 12 de Octubre | LC-MS |
| ST003629 | AN005962 | Impact of human PSMC5 gene mutations on neuronal development: Lipid profiling of PSMC5 mutant T cells | T-cells | Human | Brain disease | Leibniz Institute for Plasma Science and Technology | LC-MS |
| ST003578 | AN005876 | NRF2 supports non-small cell lung cancer growth independently of CBP/p300-enhanced glutathione synthesis | Cultured cells | Human | Cancer | Genentech Inc. | FIA-MS |
| ST003527 | AN005794 | Combining antibiotics alters the longitudinal maturation of gut microbiota and its short chain fatty acid metabolites in extremely and very preterm infants | Feces | Human | Gastrointestinal disease | Seoul National University | GC-MS/LC-MS |
| ST003477 | AN005712 | Biocrates Test | Blood | Human | Hannover Medical School | LC-MS | |
| ST003437 | AN005647 | White adipose tissue remodeling in Little Brown Myotis (Myotis lucifugus) with white-nose syndrome | Adipose tissue | Little brown bat | White-nose syndrome | Georgetown University | LC-MS |
| ST003410 | AN005601 | Lipidomics Analysis of ER+ Breast Cancer Cells Treated with Giredestrant and Palbociclib | Cultured cells | Human | Cancer | Genentech Inc. | LC-MS |
| ST003403 | AN005585 | The double-edged role of FASII regulator FabT in Streptococcus pyogenes infection - Metabolomics | Bacterial cells | Streptococcus pyogenes | Bacterial infection | INSERM | LC-MS |
| ST003390 | AN005564 | In-depth profiling of biosignatures for Type 2 diabetes mellitus cohort utilizing an integrated targeted LC-MS platform | Blood | Human | Diabetes | First Affiliated Hospital of Dalian Medical University | LC-MS |
| ST003349 | AN005490 | An integrated LC-MS analysis of the biometric characteristics of different time cohorts of race walkers - targeted | Blood | Human | First Affiliated Hospital of Dalian Medical University | LC-MS | |
| ST003341 | AN005475 | Untargeted Lipidomic Profiling of Canine Cancer Cell Lines | Cultured cells | Dog | Cancer | Kojin Therapeutics, Inc. | LC-MS |
| ST003326 | AN005449 | Lipidome profiling in non-alcoholic steatohepatitis identifies phosphatidylserine synthase 1 as a regulator of hepatic lipoprotein metabolism | Liver | Mouse | Liver disease | University of Melbourne | LC-MS |
| ST003185 | AN005232 | A multimodal drug-diet-immunotherapy combination restrains melanoma progression and metastasis - plasma lipidomics | Blood | Mouse | Cancer | University of Colorado Anschutz Medical Campus | LC-MS |
| ST003129 | AN005131 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Maternal liver | Liver | Mouse | University of Copenhagen | LC-MS | |
| ST002787 | AN004534 | Metabolomic analysis of gut metabolites in colorectal cancer patients: correlation with disease development and outcome | Feces | Human | Cancer | Wuhan University of Science and Technology | LC-MS |
| ST002747 | AN004456 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Human | CZ Biohub | LC-MS | |
| ST002747 | AN004456 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Rickettsia parkeri | CZ Biohub | LC-MS | |
| ST002522 | AN004155 | Lipidomics study on the effect of LBP protein on hepatic lipid composition in mice | Liver | Mouse | Oxidative stress | University of Science and Technology of China | LC-MS |
| ST002505 | AN004126 | A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) | Cultured cells | Human | Cancer | University of Science and Technology of China | LC-MS |
| ST002414 | AN003935 | Mass spectrometry dataset of LC-MS Lipidomics Analysis of Xenopus Laevis Optic Nerve | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST002400 | AN003910 | Alcohol dehydrogenase 1B is crucial for adipocyte homeostasis | Cultured cells | Human | INSERM | LC-MS | |
| ST002334 | AN003810 | Phospholipase D3 impact on the endolysosomal lipidome | Cultured cells | Human | Alzheimers disease | VIB-KU Leuven | LC-MS |
| ST002283 | AN003730 | The “ForensOMICS” approach to forensic post-mortem interval estimation: combining metabolomics, lipidomics and proteomics for the analysis human skeletal remains | Bone | Human | University of Central Lancashire | LC-MS | |
| ST002180 | AN003571 | Global, distinctive and personal changes in molecular and microbial profiles induced by specific fibers in humans (Targeted) | Blood | Human | Stanford University | LC-MS | |
| ST002101 | AN003434 | Functional metabolomics-based molecular profiling of acute and chronic hepatitis (Liver Lipidomics) | Liver | Mouse | NASH | Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University | LC-MS |
| ST002091 | AN003415 | Serum lipids are associated with nonalcoholic fatty liver disease: a pilot case-control study in Mexico | Blood | Human | Fatty liver disease | University of California, Los Angeles | MS(Dir. Inf.) |
| ST002081 | AN003790 | Dynamic Lipidome Alterations Associated with Human Health, Disease, and Aging | Blood | Human | Stanford University | MS(Dir. Inf.) | |
| ST002023 | AN003293 | A targeted metabolomics study for assessing rodent thyroid toxicity | Liver | Rat | Thyroid toxicity | Helmholtz Centre for Environmental Research | LC-MS |
| ST002023 | AN003293 | A targeted metabolomics study for assessing rodent thyroid toxicity | Thyroid | Rat | Thyroid toxicity | Helmholtz Centre for Environmental Research | LC-MS |
| ST001958 | AN003193 | Data on changes in lipid profiles during differentiation and maturation of human subcutaneous white adipocytes analyzed using chromatographic and bioinformatics tools | Adipose tissue | Human | Hamamatsu University School of Medicine | LC-MS | |
| ST001687 | AN002754 | Non-transformed cells respond to fat by inducing glucose metabolism | Liver | Mouse | VIB-KU Leuven Center for Cancer Biology | LC-MS | |
| ST001490 | AN002469 | Plasma lipidomic profiles after a low and high glycemic load dietary pattern in a randomized controlled cross over feeding study | Blood | Human | Fred Hutchinson Cancer Research Center | FIA-MS | |
| ST001345 | AN002239 | C56BL6 WT or IFNARKO BMDM stimulated with different TLRs (part-V) | Macrophages | Mouse | University of California, Los Angeles | MS(Dir. Inf.) | |
| ST001344 | AN002238 | C56BL6 WT or MyD88KO BMDM stimulated with different TLRs (part-IV) | Macrophages | Mouse | University of California, Los Angeles | MS(Dir. Inf.) | |
| ST001343 | AN002237 | C56BL6 WT or TRIFKO BMDM stimulated with different TLRs (part-III) | Macrophages | Mouse | University of California, Los Angeles | MS(Dir. Inf.) | |
| ST001342 | AN002236 | Timecourse of C56BL6 BMDM stimulated with different TLRs (part-I) | Macrophages | Mouse | University of California, Los Angeles | MS(Dir. Inf.) | |
| ST001341 | AN002235 | C56BL6 BMDM stimulated with different TLRs W/O acetylated LDL (part-II) | Macrophages | Mouse | University of California, Los Angeles | MS(Dir. Inf.) | |
| ST001267 | AN002104 | Mass spectrometry-based lipidomics of oral squamous cell carcinoma tissue reveals aberrant cholesterol and glycerophospholipid metabolism | Tongue | Human | Cancer | University of Helsinki | MS(Dir. Inf.) |