Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:Glu-Ala)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteAnalysis Type
ST004389 AN007334 Longitudinal Multi-omics Profiling Reveals Different Adaptation to Heat Stress in Genomically Divergent Lactating Sows Feces Pig Environmental stress North Carolina State University LC-MS
ST004389 AN007334 Longitudinal Multi-omics Profiling Reveals Different Adaptation to Heat Stress in Genomically Divergent Lactating Sows Milk Pig Environmental stress North Carolina State University LC-MS
ST004190 AN006961 Comparative Analysis of the Metabolic Profiles of Alix−/− and Ozz−/− Soleus Skeletal Muscle Muscle Mouse St Jude Children's Research Hospital LC-MS
ST004190 AN006962 Comparative Analysis of the Metabolic Profiles of Alix−/− and Ozz−/− Soleus Skeletal Muscle Muscle Mouse St Jude Children's Research Hospital LC-MS
ST004153 AN006894 Multi-omics Study of Small Intestine Adaptation After Total Colectomy in a Rat model Feces Rat Shanghai Jiao Tong University LC-MS
ST004144 AN006869 Metabolic rewiring in isogenic SW48 colorectal cancer cells with different oncogenic KRAS G12 point mutations Cultured cells Human Cancer Brunel University of London LC-MS
ST003911 AN006421 Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 4 Bacterial cells Eggerthella lenta Inflammatory bowel disease Broad Institute of MIT and Harvard LC-MS
ST003911 AN006421 Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 4 Bacterial cells Fusobacterium nucleatum Inflammatory bowel disease Broad Institute of MIT and Harvard LC-MS
ST003910 AN006418 Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. Bacterial cells Bifidobacteria Inflammatory bowel disease Broad Institute of MIT and Harvard LC-MS
ST003910 AN006418 Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. Bacterial cells Clostridium Inflammatory bowel disease Broad Institute of MIT and Harvard LC-MS
ST003910 AN006418 Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. Bacterial cells Escherichia coli Inflammatory bowel disease Broad Institute of MIT and Harvard LC-MS
ST003910 AN006418 Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. Bacterial cells Streptococcus Inflammatory bowel disease Broad Institute of MIT and Harvard LC-MS
ST003880 AN006373 Untargeted metabolome analysis of control and disease intervertebral disc tissue Tissue Human Bone disease Ganga Orthopaedic Research and Education Foundation LC-MS
ST003799 AN006244 Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 2. Cultured cells Dorea longicatena Colitis Broad Institute of MIT and Harvard LC-MS
ST003790 AN006231 Fecal metabolomics of B16-OVA tumor-bearing mice fed chow or low and high fiber purified diets and treated with isotype control or anti-PD-1 antibody Feces Mouse Cancer Princeton University LC-MS
ST003789 AN006229 Serum metabolomics of B16-OVA tumor-bearing mice fed chow or low and high fiber purified diets and treated with isotype control or anti-PD-1 antibody Blood Mouse Cancer Princeton University LC-MS
ST003768 AN006185 The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass Leaf Grass Hunan Agricultural University LC-MS
ST003768 AN006185 The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass Roots Grass Hunan Agricultural University LC-MS
ST003587 AN005891 Comparison of Machine Learning Models for Metabolomic-Based Clinical Prediction of Preterm Birth Blood Human University of Calgary LC-MS
ST003481 AN005716 Therapeutic potential of galactooligosachaccharides and Lactobacillus reuteri supplementation on dextran sulfate sodium-induced gut inflammation Feces Mouse Inflammatory bowel disease China Agricultural University LC-MS
ST003329 AN005454 Effect of the serine/arginine-rich (SR) protein RSP-6 overexpression (OE) under the low mTORC1 activity on metabolism in Caenorhabditis elegans Worms C. elegans Hiroshima University LC-MS
ST003087 AN005048 Metabolome changes in embryonic CSF (Part 9) Cerebrospinal fluid Mouse Autism Boston Children's Hospital, Harvard Medical School LC-MS
ST003086 AN005046 Metabolome changes in embryonic CSF (Part 8) Cerebrospinal fluid Mouse Autism Boston Children's Hospital, Harvard Medical School LC-MS
ST003085 AN005044 Metabolome changes in embryonic CSF (Part 7) Cerebrospinal fluid Mouse Autism Boston Children's Hospital, Harvard Medical School LC-MS
ST003084 AN005042 Metabolic changes in embryonic CSF (Part 6) Cerebrospinal fluid Mouse Autism Boston Children's Hospital, Harvard Medical School LC-MS
ST003065 AN005021 Investigative needle core biopsies for multi-omics in Glioblastoma Brain Human Cancer Brigham and Women's Hospital MALDI-MS
ST003024 AN004959 Identifying and mathematically modeling the time-course of extracellular metabolic markers associated with resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa - Part 1 Bacterial cells Pseudomonas aeruginosa Monash Institute of Pharmaceutical Sciences LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University LC-MS
ST002775 AN004517 Zebrafish Retina Regeneration Metabolomics - 3 Days Post Crush Eye tissue Zebrafish Eye disease University of Miami LC-MS
ST002512 AN004136 Gnotobiotic mice: Metabolites in intestinal contents of germ-free mice colonized with strains of gut bacterium Eggerthella lenta Intestine Mouse University of California, San Francisco LC-MS
ST002512 AN004137 Gnotobiotic mice: Metabolites in intestinal contents of germ-free mice colonized with strains of gut bacterium Eggerthella lenta Intestine Mouse University of California, San Francisco LC-MS
ST002309 AN003772 Targeting malaria parasites with novel derivatives of azithromycin Blood Plasmodium falciparum Malaria Monash University LC-MS
ST002247 AN003670 Microbiota and Health Study (Dhaka, Bangladesh) Feces Human Broad Institute of MIT and Harvard LC-MS
ST002107 AN003447 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 2) Blood Plasmodium falciparum Malaria Monash University LC-MS
ST002075 AN003382 Profiling of the human intestinal microbiome and bile acids under physiologic conditions using an ingestible sampling device (Part 2) Intestine Human University of California, Davis LC-MS
ST002028 AN003298 Metabolomics Analysis of Blood Plasma and Stool from Six Week Flaxseed Dietary Intervention in Postmenopausal Women (Stool/HILIC) Feces Human University of California, Davis LC-MS
ST001794 AN002911 Metabolomics Analysis of Time-Series Gastrointestinal Lumen Samples Jejunum Human University of California, Davis LC-MS
ST001315 AN002190 Retargeting azithromycin-like compounds as antimalarials with dual modality Blood Plasmodium falciparum Malaria Monash University LC-MS
ST001309 AN002178 Metabolite expression in liver after early life exposure to an endocrine disruptor at 240 days postnatal (part-I) Liver Rat Environmental exposure Baylor College of Medicine LC-MS
ST000784 AN001240 metabolome in a group of AA and EA matched pairs of prostate cancer (PCa) and benign adjacent tissues Prostate Human Cancer Baylor College of Medicine LC-MS
  logo