List of Studies ( Metabolite:PA 18:0_22:6)
| Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Analysis Type |
|---|---|---|---|---|---|---|---|
| ST004229 | AN007040 | Aromatic Microbial Metabolite Hippuric Acid Potentiates Pro-Inflammatory Responses in Macrophages through TLR-MyD88 Signaling and Lipid Remodeling - Lipidomics analysis on bone marrow derived macrophages pre-treated with hippuric acid and stimulated with M1-like (LPS+IFNγ) | Macrophages | Mouse | Bacterial infection | The Wistar Institute | LC-MS |
| ST004059 | AN006715 | Targeted Lipid and Metabolite Profiling in Brains of ATP13A2 Knockout Mice | Brain | Mouse | Neurodegenerative disease | Denali Therapeutics | LC-MS |
| ST004059 | AN006715 | Targeted Lipid and Metabolite Profiling in Brains of ATP13A2 Knockout Mice | Brain | Mouse | Parkinsons disease | Denali Therapeutics | LC-MS |
| ST004058 | AN006710 | Targeted Lipid and Metabolite Profiling in ATP13A2 knockout (KO) in HAP1 cells | Cultured cells | Human | Neurodegenerative disease | Denali Therapeutics | LC-MS |
| ST004058 | AN006710 | Targeted Lipid and Metabolite Profiling in ATP13A2 knockout (KO) in HAP1 cells | Cultured cells | Human | Parkinsons disease | Denali Therapeutics | LC-MS |
| ST004057 | AN006706 | Microglial and Non-Microglial Regulation of Lipid Metabolism in Alzheimer's Revealed by Genetic and Pharmacological Depletion | Brain | Human | Alzheimers disease | UT Health San Antonio | MS(Dir. Inf.) |
| ST004057 | AN006706 | Microglial and Non-Microglial Regulation of Lipid Metabolism in Alzheimer's Revealed by Genetic and Pharmacological Depletion | Brain | Mouse | Alzheimers disease | UT Health San Antonio | MS(Dir. Inf.) |
| ST003737 | AN006135 | PILRA regulates microglial neuroinflammation and lipid metabolism as a candidate therapeutic target for Alzheimer’s disease | Microglia | Human | Alzheimers disease | Denali Therapeutics | LC-MS |
| ST003694 | AN006060 | FOLFIRINOX effects on lipidomics in pancreatic cancer cells | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003637 | AN005974 | lomitapide effects on lipidomics | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003326 | AN005448 | Lipidome profiling in non-alcoholic steatohepatitis identifies phosphatidylserine synthase 1 as a regulator of hepatic lipoprotein metabolism | Liver | Mouse | Liver disease | University of Melbourne | LC-MS |
| ST003108 | AN005089 | Complete absence of GLUT1 does not impair human terminal erythroid differentiation | Cultured cells | Human | GLUT1 Deficiency Syndrome | University of Colorado | LC-MS |
| ST002522 | AN004156 | Lipidomics study on the effect of LBP protein on hepatic lipid composition in mice | Liver | Mouse | Oxidative stress | University of Science and Technology of China | LC-MS |
| ST002398 | AN003905 | Lipidomics of Tango2 Deficient and Wildtype Zebrafish Muscle Tissue | Muscle | Zebrafish | Myopathy | University of North Carolina at Chapel Hill | LC-MS |
| ST002243 | AN003662 | Lipidomics analysis of Friedreich's ataxia (FRDA) (part II) | Blood | Human | Friedreichs Ataxia | University of Pennsylvania | LC-MS |
| ST002093 | AN003419 | Lipidomics of High Fat vs Control Mice | Lung | Mouse | Obesity | University of North Carolina at Chapel Hill | LC-MS |
| ST001477 | AN002453 | Lipidomics dataset of PTEN deletion-induced nerve regeneration mouse model | Eye tissue | Mouse | Eye disease | University of Miami | LC-MS |