List of Studies ( Metabolite:PC 14:0_16:0)
| Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Analysis Type |
|---|---|---|---|---|---|---|---|
| ST004236 | AN007053 | Lipidomics analysis of TERT-hWA adipocytes spheroids under basal and stimulated lipolysis conditions | Adipocytes | Human | University of Szeged | LC-MS | |
| ST004229 | AN007039 | Aromatic Microbial Metabolite Hippuric Acid Potentiates Pro-Inflammatory Responses in Macrophages through TLR-MyD88 Signaling and Lipid Remodeling - Lipidomics analysis on bone marrow derived macrophages pre-treated with hippuric acid and stimulated with M1-like (LPS+IFNγ) | Macrophages | Mouse | Bacterial infection | The Wistar Institute | LC-MS |
| ST004168 | AN006919 | Integrative brain omics approach highlights sn-1 lysophosphatidylethanolamine in Alzheimer's dementia | Brain | Human | Alzheimers disease | Emory University | LC-MS |
| ST004167 | AN006918 | Targeted Lipidomic Profiling of STBD1 Knockdown in Clear Cell Renal Carcinoma Cells | Renal cancer cells | Human | Cancer | The Affiliated Cancer Hospital of Zhengzhou University | LC-MS |
| ST004118 | AN006829 | Lipidomics on Hep3B Cells Overexpressing CGI-158 and PNPLA2 | Cultured cells | Human | Liver disease; Cancer | Amgen | LC-MS |
| ST004049 | AN006694 | Comparison of lipidome from phagosomes containing Pam3csk4-beads vs. uncoupled-beads | Macrophages | Mouse | St Jude Children's Research Hospital | LC-MS | |
| ST004049 | AN006695 | Comparison of lipidome from phagosomes containing Pam3csk4-beads vs. uncoupled-beads | Macrophages | Mouse | St Jude Children's Research Hospital | LC-MS | |
| ST004039 | AN006678 | Soma to neuron communication links stress adaptation to stress avoidance behavior | Worms | C. elegans | Stress | University of Pittsburgh | LC-MS |
| ST004002 | AN006600 | A deep, quantitative lipid atlas of extracellular vesicles across multiple cell lines | Extracellular vescicles | Human | Cancer | European Molecular Biology Laboratory | LC-MS |
| ST004002 | AN006600 | A deep, quantitative lipid atlas of extracellular vesicles across multiple cell lines | Extracellular vescicles | Mouse | Cancer | European Molecular Biology Laboratory | LC-MS |
| ST004002 | AN006601 | A deep, quantitative lipid atlas of extracellular vesicles across multiple cell lines | Extracellular vescicles | Human | Cancer | European Molecular Biology Laboratory | LC-MS |
| ST004002 | AN006601 | A deep, quantitative lipid atlas of extracellular vesicles across multiple cell lines | Extracellular vescicles | Mouse | Cancer | European Molecular Biology Laboratory | LC-MS |
| ST003988 | AN006569 | Lipid and cell cycling perturbations driven by the HDAC inhibitor romidepsin render liver cancer vulnerable to RTK targeting and immunologically active | Cultured cells | Human | Cancer | CNRS | LC-MS |
| ST003760 | AN006175 | Untargeted lipidomics of combination gemcitabine/paclitaxel attenuated (CombAT) PDAC cells | Pancreas | Human | Cancer | Victor Chang Cardiac Research Institute | LC-MS |
| ST003758 | AN006171 | Untargeted lipidomics of gemcitabine-resistant cells | Pancreas | Human | Cancer | Victor Chang Cardiac Research Institute | LC-MS |
| ST003757 | AN006169 | Untargeted lipidomics of gemcitabine-resistant PDAC cells | Pancreas | Human | Cancer | Victor Chang Cardiac Research Institute | LC-MS |
| ST003730 | AN006120 | Virus infection of honey bee queens alters lipid profiles and indirectly suppresses a retinue pheromone component via reducing ovary mass | Head | Honey bee | Viral infection | University of British Columbia | LC-MS |
| ST003717 | AN006098 | Lipidomics analysis of mouse pancreatic cancer cells cultured RPMI, TIFM, or TIFM + arginine under lipid deprivation | Cultured cells | Mouse | Cancer | University of Chicago | LC-MS |
| ST003715 | AN006096 | Lipidomics analysis of mouse PDAC cell lines treated with tung oil | Cultured cells | Mouse | Cancer | University of Chicago | LC-MS |
| ST003714 | AN006095 | Lipidomics analysis of mouse PDAC cell lines treated with alpha-eleostearic acid | Cultured cells | Mouse | Cancer | University of Chicago | LC-MS |
| ST003703 | AN006076 | NAD Depletion in Skeletal Muscle does not Compromise Muscle Function or Accelerate Aging | Muscle | Mouse | Sarcopenia | University of Copenhagen | LC-MS |
| ST003694 | AN006060 | FOLFIRINOX effects on lipidomics in pancreatic cancer cells | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003678 | AN006039 | The effects of cystine limitation stress adaptation (CLSA) on lipidomics changes in pancreatic cancer cells | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003672 | AN006029 | Advanced Lipidomics Using UHPLC-ESI-QTOF-MS/MS Reveals Novel Lipids in Hibernating Syrian Hamsters | Brain | Golden hamster | Universidad CEU San Pablo | LC-MS | |
| ST003664 | AN006020 | Tumour interstitial fluid-enriched phosphoethanolamine suppresses T cell function. | T-cells | Mouse | Cancer | University of Chicago | LC-MS |
| ST003645 | AN005985 | Targeting the c-MYC/ELOVL6 Pathway Alters Cell Membrane Mechanics and Enhances Chemotherapeutic Efficacy in Pancreatic Cancer | Cultured cells | Human | Cancer | Universidad Francisco de Vitoria - Hospital 12 de Octubre | LC-MS |
| ST003637 | AN005974 | lomitapide effects on lipidomics | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003632 | AN005965 | Dysregulated Lipid Metabolism in African American Women Who Experienced Cardiometabolic Complications of Pregnancy | Blood | Human | Preeclampsia | Emory University | LC-MS |
| ST003629 | AN005961 | Impact of human PSMC5 gene mutations on neuronal development: Lipid profiling of PSMC5 mutant T cells | T-cells | Human | Brain disease | Leibniz Institute for Plasma Science and Technology | LC-MS |
| ST003629 | AN005962 | Impact of human PSMC5 gene mutations on neuronal development: Lipid profiling of PSMC5 mutant T cells | T-cells | Human | Brain disease | Leibniz Institute for Plasma Science and Technology | LC-MS |
| ST003578 | AN005874 | NRF2 supports non-small cell lung cancer growth independently of CBP/p300-enhanced glutathione synthesis | Cultured cells | Human | Cancer | Genentech Inc. | FIA-MS |
| ST003575 | AN005870 | Lipidomic Profiling of a Preclinical Model of Streptozotocin induced Diabetic Cardiomyopathy | Blood | Mouse | Cardiovascular disease | Baker Heart and Diabetes Institute | LC-MS |
| ST003514 | AN005769 | Highly reliable LC-MS lipidomics database for efficient human plasma profiling based on NIST SRM 1950 | Blood | Human | Universidad CEU San Pablo | LC-MS | |
| ST003472 | AN005707 | An Optimized Plasmalogen Dietary Supplement Remodels the Cardiac Lipidome and Proteome, Providing Greater Protection in a Male Mouse Model of Dilated Cardiomyopathy Over Females | Blood | Mouse | Heart disease | Baker Heart and Diabetes Institute | LC-MS |
| ST003472 | AN005707 | An Optimized Plasmalogen Dietary Supplement Remodels the Cardiac Lipidome and Proteome, Providing Greater Protection in a Male Mouse Model of Dilated Cardiomyopathy Over Females | Heart | Mouse | Heart disease | Baker Heart and Diabetes Institute | LC-MS |
| ST003452 | AN005668 | Integrated Proteomic and Lipidomic Analysis | Adipose tissue | Human | Obesity | Hamamatsu University School of Medicine | LC-MS |
| ST003410 | AN005599 | Lipidomics Analysis of ER+ Breast Cancer Cells Treated with Giredestrant and Palbociclib | Cultured cells | Human | Cancer | Genentech Inc. | LC-MS |
| ST003409 | AN005596 | Impact of giredestrant on the lipid profile of MCF-7 breast cancer cells | Cultured cells | Human | Cancer | Genentech Inc. | LC-MS |
| ST003398 | AN005577 | Specific activation of the integrated stress response (ISR) uncovers regulation of lipid droplet biogenesis | Cultured cells | Human | Cancer | Calico Life Sciences | LC-MS |
| ST003364 | AN005511 | Deep lipidomic profiling reveals sex dimorphism of lipid metabolism in fibro-calcific aortic valve disease | Aortic valve tissue | Human | Heart disease | Technical University Dresden | LC-MS |
| ST003364 | AN005512 | Deep lipidomic profiling reveals sex dimorphism of lipid metabolism in fibro-calcific aortic valve disease | Aortic valve tissue | Human | Heart disease | Technical University Dresden | LC-MS |
| ST003341 | AN005476 | Untargeted Lipidomic Profiling of Canine Cancer Cell Lines | Cultured cells | Dog | Cancer | Kojin Therapeutics, Inc. | LC-MS |
| ST003336 | AN005468 | Differentiation between cytotoxic stress-induced PUFA biosynthesis and PUFA incorporation into phospholipids by metabolic flux studies in fibroblasts | Cultured cells | Mouse | Oxidative stress | University of Innsbruck | LC-MS |
| ST003336 | AN005468 | Differentiation between cytotoxic stress-induced PUFA biosynthesis and PUFA incorporation into phospholipids by metabolic flux studies in fibroblasts | Cultured cells | Mouse | Stress | University of Innsbruck | LC-MS |
| ST003328 | AN005452 | Increased Cholesterol Synthesis Drives Neurotoxicity in Patient Stem Cell-Derived Model of Multiple Sclerosis - cellular lipidomics | Stem cells | Human | Multiple sclerosis | University of Colorado Denver | LC-MS |
| ST003326 | AN005449 | Lipidome profiling in non-alcoholic steatohepatitis identifies phosphatidylserine synthase 1 as a regulator of hepatic lipoprotein metabolism | Liver | Mouse | Liver disease | University of Melbourne | LC-MS |
| ST003319 | AN005433 | Changes in the phosphatidylcholine fatty acid composition in subcellular fractions of fibroblasts induced by valinomycin | Fibroblast cells | Mouse | Oxidative stress | University of Innsbruck | LC-MS |
| ST003318 | AN005432 | Kinetic changes in the phospholipid composition of fibroblasts induced by cytotoxic stress | Fibroblast cells | Mouse | Oxidative stress | University of Innsbruck | LC-MS |
| ST003293 | AN005392 | High Fat Feeding Alters Circulating Triglyceride Profile by Decreasing SCD Activity and Depleting omega-3 Fatty Acids | Blood | Rat | Hyperlipidemia | University of Southern California | LC-MS |
| ST003290 | AN005388 | High expression of oleoyl-ACP-hydrolase underpins life-threatening respiratory viral diseases | Lung | Mouse | Viral infection | Peter Doherty Institute for Infection and Immunity | LC-MS |
| ST003275 | AN005362 | Lipidomics analysis within healthy donors and end-stage heart failure with a focus on ischaemic cardiomyopathy with diabetes | Heart | Human | Heart disease | University of Sydney | LC-MS |
| ST003260 | AN005344 | Exploration of RSL3-induced and Chlorido[N,N’-disalicylidene-1,2-phenylenediamine]iron(III) complex-induced changes in the lipidome of MDA-MB-231 breast cancer cells | Breast cancer cells | Human | Cancer | University of Innsbruck | LC-MS |
| ST003257 | AN005342 | Exploration of EMT-dependent changes in the lipidome of KPC cells | Tumor cells | Mouse | Cancer | University of Innsbruck | LC-MS |
| ST003250 | AN005323 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Tectum | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003250 | AN005323 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Tectum | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003250 | AN005324 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Tectum | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003250 | AN005324 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Tectum | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003247 | AN005318 | Effects of mitoregulin loss in aged female mice | Heart | Mouse | Cardiovascular disease | University of Iowa | LC-MS |
| ST003246 | AN005316 | Effects of mitoregulin loss on cardiac and mitochondrial lipids in aged male mice | Heart | Mouse | Cardiovascular disease | University of Iowa | LC-MS |
| ST003245 | AN005315 | Exploration of Zeb1-dependent changes in the lipidome of MDA-MB-231 cells | Breast cancer cells | Human | Cancer | University of Innsbruck | LC-MS |
| ST003243 | AN005313 | Lipidomic analysis of serum from WT, liver-specific Gclc KO, liver-specific Nrf2 KO, and liver-specific Gclc-Nrf2 DKO mice. | Blood | Mouse | Oxidative stress | University of Rochester Medical Center | LC-MS |
| ST003243 | AN005313 | Lipidomic analysis of serum from WT, liver-specific Gclc KO, liver-specific Nrf2 KO, and liver-specific Gclc-Nrf2 DKO mice. | Blood | Mouse | Stress | University of Rochester Medical Center | LC-MS |
| ST003226 | AN005289 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003226 | AN005289 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003226 | AN005290 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003226 | AN005290 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003225 | AN005287 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Chiasm | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003225 | AN005287 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Chiasm | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003225 | AN005288 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Chiasm | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003225 | AN005288 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Chiasm | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003222 | AN005283 | A small molecule macrophage migration inhibitory factor agonist ameliorates age-related myocardial intolerance to ischemia-reperfusion insults via metabolic regulation - Part 1 | Heart | Mouse | Ischemia | University of Mississippi Medical Center | LC-MS |
| ST003184 | AN005228 | A multimodal drug-diet-immunotherapy combination restrains melanoma progression and metastasis - tumor lipidomics | Tumor cells | Mouse | Cancer | University of Colorado Anschutz Medical Campus | LC-MS |
| ST003168 | AN005198 | Lipidomic analysis of cryopreserved human cardiac tissue from young and ageing adults | Heart | Human | Heart disease | University of Sydney | LC-MS |
| ST003130 | AN005134 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Maternal blood | Blood | Mouse | University of Copenhagen | LC-MS | |
| ST003129 | AN005132 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Maternal liver | Liver | Mouse | University of Copenhagen | LC-MS | |
| ST003125 | AN005123 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Fetal liver | Liver | Mouse | Maternal immune system activation | University of Copenhagen | LC-MS |
| ST003125 | AN005124 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Fetal liver | Liver | Mouse | Maternal immune system activation | University of Copenhagen | LC-MS |
| ST003103 | AN005077 | Reinforcing the Evidence of Mitochondrial Dysfunction in Long COVID Patients using a Multiplatform Mass Spectrometry-based Metabolomics Approach | Blood | Human | COVID-19 | Universidad CEU San Pablo | GC-MS/LC-MS |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Adipose tissue | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Blood | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Heart | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Intestine | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Kidney | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Liver | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Muscle | Mouse | North Carolina State University | LC-MS | |
| ST003038 | AN004985 | Untargeted lipidomics of WT and Cyp2c44(-/-) mice liver. | Liver | Mouse | Diabetes | Vanderbilt University Medical Center | LC-MS |
| ST002967 | AN004875 | Lipidomics study of FASN inhibition in HT-29 and HCT 116 spheroids | Cultured cells | Human | Cancer | Ohio State University | LC-MS |
| ST002939 | AN004824 | Role of PI3K in Atrial Myopathy: Insights from Transgenic Mouse Models and Identification of a Dysregulated PI3K Lipid Profile in Individuals with Atrial Fibrillation - Part 2 of 2, Mus musculus | Atria | Mouse | Atrial fibrillation | Baker Heart and Diabetes Institute | LC-MS |
| ST002939 | AN004824 | Role of PI3K in Atrial Myopathy: Insights from Transgenic Mouse Models and Identification of a Dysregulated PI3K Lipid Profile in Individuals with Atrial Fibrillation - Part 2 of 2, Mus musculus | Ventricles | Mouse | Atrial fibrillation | Baker Heart and Diabetes Institute | LC-MS |
| ST002938 | AN004823 | Role of PI3K in Atrial Myopathy: Insights from Transgenic Mouse Models and Identification of a Dysregulated PI3K Lipid Profile in Individuals with Atrial Fibrillation - part 1 of 2, human plasma | Blood | Human | Atrial fibrillation | Baker Heart and Diabetes Institute | LC-MS |
| ST002937 | AN004821 | Deep Metabolic Phenotyping of Newborn Cord Blood Reveals Maternal-Fetal Interactions and Disease Risk | Blood | Human | Stanford University | LC-MS | |
| ST002911 | AN004780 | LiLA: Lipid Lung-based ATLAS built Through a Comprehensive Workflow Designed for an Accurate Lipid Annotation | Lung | Mouse | Tuberculosis | Universidad CEU San Pablo | LC-MS |
| ST002911 | AN004781 | LiLA: Lipid Lung-based ATLAS built Through a Comprehensive Workflow Designed for an Accurate Lipid Annotation | Lung | Mouse | Tuberculosis | Universidad CEU San Pablo | LC-MS |
| ST002787 | AN004534 | Metabolomic analysis of gut metabolites in colorectal cancer patients: correlation with disease development and outcome | Feces | Human | Cancer | Wuhan University of Science and Technology | LC-MS |
| ST002747 | AN004457 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Human | CZ Biohub | LC-MS | |
| ST002747 | AN004457 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Rickettsia parkeri | CZ Biohub | LC-MS | |
| ST002713 | AN004397 | Ranolazine induced metabolic rewiring improves melanoma responses to targeted therapy and immunotherapy - lipidomics | Cultured cells | Human | Cancer | University of Colorado Denver | LC-MS |
| ST002700 | AN004377 | Metabolomic analysis of maternal mid-gestation plasma and cord blood: lipidomics | Blood | Human | Autism | Columbia University | LC-MS |
| ST002684 | AN004357 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Brown Adipose Powder - Untargeted Lipidomics, Reversed-Phase Negative | Brown adipose | Rat | Georgia Institute of Technology | LC-MS | |
| ST002677 | AN004349 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Liver Powder - Untargeted Lipidomics, Reversed-Phase Negative | Liver | Rat | Georgia Institute of Technology | LC-MS | |
| ST002670 | AN004342 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Lung Powder - Untargeted Lipidomics, Reversed-Phase Negative | Lung | Rat | Georgia Institute of Technology | LC-MS | |
| ST002656 | AN004328 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Kidney Powder - Untargeted Lipidomics, Reversed-Phase Negative | Kidney | Rat | Georgia Institute of Technology | LC-MS | |
| ST002651 | AN004323 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Heart Powder - Untargeted Lipidomics, Reversed-Phase Negative | Heart | Rat | Georgia Institute of Technology | LC-MS | |
| ST002644 | AN004316 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Gastrocnemius Powder - Untargeted Lipidomics, Reversed-Phase Negative | Gastrocnemius | Rat | Georgia Institute of Technology | LC-MS | |
| ST002636 | AN004308 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Hippocampus Powder - Untargeted Lipidomics, Reversed-Phase Negative | Hippocampus | Rat | Georgia Institute of Technology | LC-MS | |
| ST002522 | AN004156 | Lipidomics study on the effect of LBP protein on hepatic lipid composition in mice | Liver | Mouse | Oxidative stress | University of Science and Technology of China | LC-MS |
| ST002505 | AN004127 | A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) | Cultured cells | Human | Cancer | University of Science and Technology of China | LC-MS |
| ST002503 | AN004112 | Endothelial Cell CD36 Regulates Membrane Ceramide Formation, Exosome Fatty Acid Delivery to Tissues and Circulating Fatty Acid Levels | Cultured cells | Mouse | Washington University in St. Louis | LC-MS | |
| ST002414 | AN003935 | Mass spectrometry dataset of LC-MS Lipidomics Analysis of Xenopus Laevis Optic Nerve | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST002403 | AN003917 | Deep multi-omic profiling reveals extensive mitochondrial remodeling driven by glycemia in early diabetic kidney disease (Mitochondria) | Mitochondria | Rat | Kidney disease | Baker Heart and Diabetes Institute | LC-MS |
| ST002398 | AN003905 | Lipidomics of Tango2 Deficient and Wildtype Zebrafish Muscle Tissue | Muscle | Zebrafish | Myopathy | University of North Carolina at Chapel Hill | LC-MS |
| ST002283 | AN003731 | The “ForensOMICS” approach to forensic post-mortem interval estimation: combining metabolomics, lipidomics and proteomics for the analysis human skeletal remains | Bone | Human | University of Central Lancashire | LC-MS | |
| ST002243 | AN003662 | Lipidomics analysis of Friedreich's ataxia (FRDA) (part II) | Blood | Human | Friedreichs Ataxia | University of Pennsylvania | LC-MS |
| ST002229 | AN003638 | Estrogen receptor α deficiency in cardiac myocytes reprograms heart-derived extracellular vesicle proteome and induces obesity in female mice (Part 1) | Blood | Mouse | Obesity | Baker Heart and Diabetes Institute | LC-MS |
| ST002229 | AN003638 | Estrogen receptor α deficiency in cardiac myocytes reprograms heart-derived extracellular vesicle proteome and induces obesity in female mice (Part 1) | Epididymal fat | Mouse | Obesity | Baker Heart and Diabetes Institute | LC-MS |
| ST002229 | AN003638 | Estrogen receptor α deficiency in cardiac myocytes reprograms heart-derived extracellular vesicle proteome and induces obesity in female mice (Part 1) | Liver | Mouse | Obesity | Baker Heart and Diabetes Institute | LC-MS |
| ST002229 | AN003638 | Estrogen receptor α deficiency in cardiac myocytes reprograms heart-derived extracellular vesicle proteome and induces obesity in female mice (Part 1) | Muscle | Mouse | Obesity | Baker Heart and Diabetes Institute | LC-MS |
| ST002229 | AN003638 | Estrogen receptor α deficiency in cardiac myocytes reprograms heart-derived extracellular vesicle proteome and induces obesity in female mice (Part 1) | Ventricles | Mouse | Obesity | Baker Heart and Diabetes Institute | LC-MS |
| ST002180 | AN003570 | Global, distinctive and personal changes in molecular and microbial profiles induced by specific fibers in humans (Targeted) | Blood | Human | Stanford University | LC-MS | |
| ST002162 | AN003542 | CFAP418 participates in membrane-associated cellular processes through binding lipids during ciliogenesis | Eye tissue | Mouse | Eye disease | University of Utah - Metabolomics Core | LC-MS |
| ST002162 | AN003543 | CFAP418 participates in membrane-associated cellular processes through binding lipids during ciliogenesis | Eye tissue | Mouse | Eye disease | University of Utah - Metabolomics Core | LC-MS |
| ST002145 | AN003511 | The Carbohydrate Sensing Transcription Factor ChREBP Links Mitochondrial Lipidomes to Mitochondrial Dynamics and Progression of Diabetic Nephropathy | Cultured cells | Mouse | Diabetes | University of Texas MD Anderson Cancer Center | LC-MS |
| ST002145 | AN003512 | The Carbohydrate Sensing Transcription Factor ChREBP Links Mitochondrial Lipidomes to Mitochondrial Dynamics and Progression of Diabetic Nephropathy | Cultured cells | Mouse | Diabetes | University of Texas MD Anderson Cancer Center | LC-MS |
| ST002093 | AN003419 | Lipidomics of High Fat vs Control Mice | Lung | Mouse | Obesity | University of North Carolina at Chapel Hill | LC-MS |
| ST002081 | AN003790 | Dynamic Lipidome Alterations Associated with Human Health, Disease, and Aging | Blood | Human | Stanford University | MS(Dir. Inf.) | |
| ST002047 | AN003334 | Lyso-lipid induced oligodendrocytes maturation underlie restoration of optic nerve function | Cultured cells | Rat | Eye disease | University of Miami | LC-MS |
| ST001989 | AN003241 | THEM6-mediated lipid remodelling sustains stress resistance in cancer (Part 3) | LNCaP cells | Human | Cancer | IGMM | LC-MS |
| ST001950 | AN003175 | Lipidome Alterations Following Mild Traumatic Brain Injury. | Blood | Rat | Traumatic brain injury | Georgia Institute of Technology | LC-MS |
| ST001936 | AN004932 | Pseudoexfoliation aqueous humor lipidome suggests enrichment of specific pathways | Eye tissue | Human | Pseudoexfoliation syndrome | University of Miami | LC-MS |
| ST001907 | AN003104 | Training-induced bioenergetic improvement in human skeletal muscle is associated with non-stoichiometric changes in the mitochondrial proteome without reorganisation of respiratory chain content | Muscle | Human | Baker Heart and Diabetes Institute | LC-MS | |
| ST001888 | AN003059 | A Metabolome Atlas of the Aging Mouse Brain (Study part II) | Brain | Mouse | University of California, Davis | GC-MS/LC-MS | |
| ST001849 | AN002995 | Longitudinal Metabolomics of Human Plasma Reveals Robust Prognostic Markers of COVID-19 Disease Severity (part I) | Blood | Human | COVID-19 | Washington University in St. Louis | LC-MS |
| ST001741 | AN002834 | Phospholipid profiling of Scd1-defective mice | Adipose tissue | Mouse | University of Innsbruck | LC-MS | |
| ST001741 | AN002834 | Phospholipid profiling of Scd1-defective mice | Liver | Mouse | University of Innsbruck | LC-MS | |
| ST001741 | AN002834 | Phospholipid profiling of Scd1-defective mice | Muscle | Mouse | University of Innsbruck | LC-MS | |
| ST001741 | AN002834 | Phospholipid profiling of Scd1-defective mice | Skin | Mouse | University of Innsbruck | LC-MS | |
| ST001738 | AN002830 | AdipoAtlas: A Reference Lipidome for Human White Adipose Tissue | Adipose tissue | Human | Obesity | University of Leipzig | LC-MS |
| ST001725 | AN002810 | Lipidomics dataset of Danio rerio optic nerve regeneration model | Eye tissue | Zebrafish | Eye disease | University of Miami | LC-MS |
| ST001687 | AN002755 | Non-transformed cells respond to fat by inducing glucose metabolism | Liver | Mouse | VIB-KU Leuven Center for Cancer Biology | LC-MS | |
| ST001637 | AN002677 | A Metabolome Atlas of the Aging Mouse Brain | Brain | Mouse | University of California, Davis | GC-MS/LC-MS | |
| ST001477 | AN002453 | Lipidomics dataset of PTEN deletion-induced nerve regeneration mouse model | Eye tissue | Mouse | Eye disease | University of Miami | LC-MS |
| ST001405 | AN002348 | MDM2-Dependent Rewiring of Metabolomic and Lipidomic Profiles in Dedifferentiated Liposarcoma Models | Cultured cells | Human | Ohio State University | LC-MS | |
| ST001359 | AN002263 | Monophasic lipidomics extraction in cancer cell line | Hep G2 cells | Human | Cancer | Beatson Institute for Cancer Research | LC-MS |
| ST001267 | AN002104 | Mass spectrometry-based lipidomics of oral squamous cell carcinoma tissue reveals aberrant cholesterol and glycerophospholipid metabolism | Tongue | Human | Cancer | University of Helsinki | MS(Dir. Inf.) |
| ST001154 | AN001942 | A comprehensive plasma metabolomics dataset for a cohort of mouse knockouts within the International Mouse Phenotyping Consortium | Blood | Mouse | University of California, Davis | GC-MS/LC-MS | |
| ST001154 | AN001943 | A comprehensive plasma metabolomics dataset for a cohort of mouse knockouts within the International Mouse Phenotyping Consortium | Blood | Mouse | University of California, Davis | GC-MS/LC-MS | |
| ST001111 | AN001805 | Breast Cancer Lipidomics Tissue | Adipose tissue | Human | Cancer | Baylor College of Medicine | LC-MS |
| ST001111 | AN001806 | Breast Cancer Lipidomics Tissue | Adipose tissue | Human | Cancer | Baylor College of Medicine | LC-MS |
| ST001106 | AN001800 | Lipidomics of Newborn Heart Tissue Exposed to Excess Maternal Cortisol in Late Gestation (part-1) | Heart | Sheep | University of Florida | LC-MS | |
| ST001061 | AN001732 | Lipidomics of Near-Term Fetal and Newborn Sheep Cardiac Tissue | Heart | Sheep | University of Florida | LC-MS | |
| ST001059 | AN001733 | Lipidomics for wildlife disease etiology and biomarker discovery: a case study of pansteatitis outbreak in South Africa (part-II) | Adipose tissue | Mozambique tilapia | Inflammation | South East Center for Integrated Metabolomics | LC-MS |
| ST001052 | AN001721 | Lipidomics for wildlife disease etiology and biomarker discovery: a case study of pansteatitis outbreak in South Africa (part-I) | Blood | Mozambique tilapia | Inflammation | South East Center for Integrated Metabolomics | LC-MS |
| ST001037 | AN001698 | High Resolution GC-MS and FID Metabolomics of Human Serum | Blood | Human | Wake Forest Baptist Medical Center | GC-MS | |
| ST001019 | AN001667 | Lipidomic profiling of heart and plasma of mice following swim training versus pressure overload | Blood | Mouse | Baker Heart and Diabetes Institute | LC-MS | |
| ST001019 | AN001667 | Lipidomic profiling of heart and plasma of mice following swim training versus pressure overload | Heart | Mouse | Baker Heart and Diabetes Institute | LC-MS |