List of Studies ( Metabolite:PE O-16:1/20:4)
| Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Analysis Type |
|---|---|---|---|---|---|---|---|
| ST004300 | AN007153 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Brain | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004300 | AN007153 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Liver | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004300 | AN007155 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Brain | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004300 | AN007155 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Liver | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004229 | AN007039 | Aromatic Microbial Metabolite Hippuric Acid Potentiates Pro-Inflammatory Responses in Macrophages through TLR-MyD88 Signaling and Lipid Remodeling - Lipidomics analysis on bone marrow derived macrophages pre-treated with hippuric acid and stimulated with M1-like (LPS+IFNγ) | Macrophages | Mouse | Bacterial infection | The Wistar Institute | LC-MS |
| ST004229 | AN007040 | Aromatic Microbial Metabolite Hippuric Acid Potentiates Pro-Inflammatory Responses in Macrophages through TLR-MyD88 Signaling and Lipid Remodeling - Lipidomics analysis on bone marrow derived macrophages pre-treated with hippuric acid and stimulated with M1-like (LPS+IFNγ) | Macrophages | Mouse | Bacterial infection | The Wistar Institute | LC-MS |
| ST004168 | AN006919 | Integrative brain omics approach highlights sn-1 lysophosphatidylethanolamine in Alzheimer's dementia | Brain | Human | Alzheimers disease | Emory University | LC-MS |
| ST004167 | AN006918 | Targeted Lipidomic Profiling of STBD1 Knockdown in Clear Cell Renal Carcinoma Cells | Renal cancer cells | Human | Cancer | The Affiliated Cancer Hospital of Zhengzhou University | LC-MS |
| ST004049 | AN006695 | Comparison of lipidome from phagosomes containing Pam3csk4-beads vs. uncoupled-beads | Macrophages | Mouse | St Jude Children's Research Hospital | LC-MS | |
| ST004002 | AN006601 | A deep, quantitative lipid atlas of extracellular vesicles across multiple cell lines | Extracellular vescicles | Human | Cancer | European Molecular Biology Laboratory | LC-MS |
| ST004002 | AN006601 | A deep, quantitative lipid atlas of extracellular vesicles across multiple cell lines | Extracellular vescicles | Mouse | Cancer | European Molecular Biology Laboratory | LC-MS |
| ST003945 | AN006485 | Lipidomics characterization of A375 and A375-VR melanoma cells treated with ranolazine and sampled longitudinally. | Cultured cells | Human | Cancer | University of Colorado Denver | LC-MS |
| ST003945 | AN006486 | Lipidomics characterization of A375 and A375-VR melanoma cells treated with ranolazine and sampled longitudinally. | Cultured cells | Human | Cancer | University of Colorado Denver | LC-MS |
| ST003792 | AN006233 | Untargeted lipidomics characterization of blood samples from patients with maple syrup urine disease (MSUD) in comparison to healthy controls | Blood | Human | Maple syrup urinary disease | University of Colorado Denver | LC-MS |
| ST003792 | AN006233 | Untargeted lipidomics characterization of blood samples from patients with maple syrup urine disease (MSUD) in comparison to healthy controls | Blood | Human | Metabolic disease | University of Colorado Denver | LC-MS |
| ST003760 | AN006175 | Untargeted lipidomics of combination gemcitabine/paclitaxel attenuated (CombAT) PDAC cells | Pancreas | Human | Cancer | Victor Chang Cardiac Research Institute | LC-MS |
| ST003758 | AN006171 | Untargeted lipidomics of gemcitabine-resistant cells | Pancreas | Human | Cancer | Victor Chang Cardiac Research Institute | LC-MS |
| ST003757 | AN006169 | Untargeted lipidomics of gemcitabine-resistant PDAC cells | Pancreas | Human | Cancer | Victor Chang Cardiac Research Institute | LC-MS |
| ST003751 | AN006160 | Comprehensive Lipidomic Analysis Identifies Critical Lipid and Metabolic Pathway Shifts in Alport Syndrome | Blood | Human | Kidney disease | Universidad CEU San Pablo | LC-MS |
| ST003751 | AN006160 | Comprehensive Lipidomic Analysis Identifies Critical Lipid and Metabolic Pathway Shifts in Alport Syndrome | Urine | Human | Kidney disease | Universidad CEU San Pablo | LC-MS |
| ST003751 | AN006161 | Comprehensive Lipidomic Analysis Identifies Critical Lipid and Metabolic Pathway Shifts in Alport Syndrome | Blood | Human | Kidney disease | Universidad CEU San Pablo | LC-MS |
| ST003751 | AN006161 | Comprehensive Lipidomic Analysis Identifies Critical Lipid and Metabolic Pathway Shifts in Alport Syndrome | Urine | Human | Kidney disease | Universidad CEU San Pablo | LC-MS |
| ST003745 | AN006150 | Screen potential marker proteins influencing spermatogenesis in the testes of Shandong Black Cattle bulls via multi-omics integrated analysis. | Testes | Cattle | Qingdao Agricultural University | LC-MS | |
| ST003703 | AN006075 | NAD Depletion in Skeletal Muscle does not Compromise Muscle Function or Accelerate Aging | Muscle | Mouse | Sarcopenia | University of Copenhagen | LC-MS |
| ST003694 | AN006060 | FOLFIRINOX effects on lipidomics in pancreatic cancer cells | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003678 | AN006039 | The effects of cystine limitation stress adaptation (CLSA) on lipidomics changes in pancreatic cancer cells | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003672 | AN006030 | Advanced Lipidomics Using UHPLC-ESI-QTOF-MS/MS Reveals Novel Lipids in Hibernating Syrian Hamsters | Brain | Golden hamster | Universidad CEU San Pablo | LC-MS | |
| ST003664 | AN006021 | Tumour interstitial fluid-enriched phosphoethanolamine suppresses T cell function. | T-cells | Mouse | Cancer | University of Chicago | LC-MS |
| ST003637 | AN005974 | lomitapide effects on lipidomics | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003632 | AN005965 | Dysregulated Lipid Metabolism in African American Women Who Experienced Cardiometabolic Complications of Pregnancy | Blood | Human | Preeclampsia | Emory University | LC-MS |
| ST003629 | AN005961 | Impact of human PSMC5 gene mutations on neuronal development: Lipid profiling of PSMC5 mutant T cells | T-cells | Human | Brain disease | Leibniz Institute for Plasma Science and Technology | LC-MS |
| ST003622 | AN005950 | A multi-omic census reveals obesity-associated microRNA miR-let-7 as novel instigator of adipose mitochondrial dysfunction and of intergenerational metabolic decline. | Blood | Mouse | Obesity | University of Southern Denmark | LC-MS |
| ST003469 | AN005704 | Lipidomics of mice white adipose tissue to support understanding of early metabolic shift in presymptomatic sepsis patients. (Part14 mice white adipose tissue lipid) | Adipose tissue | Mouse | Sepsis | Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute | LC-MS |
| ST003468 | AN005701 | Lipidomics of mice spleen to support understanding of early metabolic shift in presymptomatic sepsis patients. (Part13 mice spleen lipid) | Spleen | Mouse | Sepsis | Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute | LC-MS |
| ST003467 | AN005700 | Lipidomics of mice serum to support understanding of early metabolic shift in presymptomatic sepsis patients. (Part12 mice serum lipid) | Blood | Mouse | Sepsis | Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute | LC-MS |
| ST003466 | AN005697 | Lipidomics of mice liver to support understanding of early metabolic shift in presymptomatic sepsis patients. (Part11 mice liver lipid) | Liver | Mouse | Sepsis | Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute | LC-MS |
| ST003465 | AN005695 | Lipidomics of mice kidney to support understanding of early metabolic shift in presymptomatic sepsis patients. (Part10 mice kidney lipid) | Kidney | Mouse | Sepsis | Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute | LC-MS |
| ST003464 | AN005693 | Lipidomics of mice heart to support understanding of early metabolic shift in presymptomatic sepsis patients. (Part9 mice heart lipid) | Heart | Mouse | Sepsis | Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute | LC-MS |
| ST003452 | AN005669 | Integrated Proteomic and Lipidomic Analysis | Adipose tissue | Human | Obesity | Hamamatsu University School of Medicine | LC-MS |
| ST003426 | AN005626 | Metabolomic and transcriptomic remodeling of bone marrow myeloid cells in response to maternal obesity | Bone marrow | Mouse | Cardiovascular disease | Oregon Health and Science University | LC-MS |
| ST003426 | AN005626 | Metabolomic and transcriptomic remodeling of bone marrow myeloid cells in response to maternal obesity | Bone marrow | Mouse | Metabolic syndrome | Oregon Health and Science University | LC-MS |
| ST003426 | AN005626 | Metabolomic and transcriptomic remodeling of bone marrow myeloid cells in response to maternal obesity | Bone marrow | Mouse | Obesity | Oregon Health and Science University | LC-MS |
| ST003328 | AN005452 | Increased Cholesterol Synthesis Drives Neurotoxicity in Patient Stem Cell-Derived Model of Multiple Sclerosis - cellular lipidomics | Stem cells | Human | Multiple sclerosis | University of Colorado Denver | LC-MS |
| ST003326 | AN005448 | Lipidome profiling in non-alcoholic steatohepatitis identifies phosphatidylserine synthase 1 as a regulator of hepatic lipoprotein metabolism | Liver | Mouse | Liver disease | University of Melbourne | LC-MS |
| ST003293 | AN005392 | High Fat Feeding Alters Circulating Triglyceride Profile by Decreasing SCD Activity and Depleting omega-3 Fatty Acids | Blood | Rat | Hyperlipidemia | University of Southern California | LC-MS |
| ST003290 | AN005389 | High expression of oleoyl-ACP-hydrolase underpins life-threatening respiratory viral diseases | Lung | Mouse | Viral infection | Peter Doherty Institute for Infection and Immunity | LC-MS |
| ST003275 | AN005363 | Lipidomics analysis within healthy donors and end-stage heart failure with a focus on ischaemic cardiomyopathy with diabetes | Heart | Human | Heart disease | University of Sydney | LC-MS |
| ST003250 | AN005324 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Tectum | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003250 | AN005324 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Tectum | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003247 | AN005319 | Effects of mitoregulin loss in aged female mice | Heart | Mouse | Cardiovascular disease | University of Iowa | LC-MS |
| ST003246 | AN005317 | Effects of mitoregulin loss on cardiac and mitochondrial lipids in aged male mice | Heart | Mouse | Cardiovascular disease | University of Iowa | LC-MS |
| ST003242 | AN005312 | Lipidomic analysis of kidney from Gclc WT and whole-body Gclc KO mice. | Kidney | Mouse | Oxidative stress | University of Rochester Medical Center | LC-MS |
| ST003242 | AN005312 | Lipidomic analysis of kidney from Gclc WT and whole-body Gclc KO mice. | Kidney | Mouse | Stress | University of Rochester Medical Center | LC-MS |
| ST003241 | AN005310 | Lipidomic analysis of lung from Gclc WT and whole-body Gclc KO mice. | Lung | Mouse | Oxidative stress | University of Rochester Medical Center | LC-MS |
| ST003241 | AN005310 | Lipidomic analysis of lung from Gclc WT and whole-body Gclc KO mice. | Lung | Mouse | Stress | University of Rochester Medical Center | LC-MS |
| ST003226 | AN005289 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003226 | AN005289 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003226 | AN005290 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003226 | AN005290 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003225 | AN005288 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Chiasm | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003225 | AN005288 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Chiasm | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003222 | AN005283 | A small molecule macrophage migration inhibitory factor agonist ameliorates age-related myocardial intolerance to ischemia-reperfusion insults via metabolic regulation - Part 1 | Heart | Mouse | Ischemia | University of Mississippi Medical Center | LC-MS |
| ST003185 | AN005232 | A multimodal drug-diet-immunotherapy combination restrains melanoma progression and metastasis - plasma lipidomics | Blood | Mouse | Cancer | University of Colorado Anschutz Medical Campus | LC-MS |
| ST003184 | AN005228 | A multimodal drug-diet-immunotherapy combination restrains melanoma progression and metastasis - tumor lipidomics | Tumor cells | Mouse | Cancer | University of Colorado Anschutz Medical Campus | LC-MS |
| ST003168 | AN005199 | Lipidomic analysis of cryopreserved human cardiac tissue from young and ageing adults | Heart | Human | Heart disease | University of Sydney | LC-MS |
| ST003157 | AN005179 | Diet modulates the protective effects of dimethyl fumarate mediated by the immunometabolic neutrophil receptor HCA2 - Lipidomics | Blood | Mouse | Multiple sclerosis | University of Luebeck | LC-MS |
| ST003130 | AN005133 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Maternal blood | Blood | Mouse | University of Copenhagen | LC-MS | |
| ST003129 | AN005131 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Maternal liver | Liver | Mouse | University of Copenhagen | LC-MS | |
| ST003125 | AN005123 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Fetal liver | Liver | Mouse | Maternal immune system activation | University of Copenhagen | LC-MS |
| ST003108 | AN005090 | Complete absence of GLUT1 does not impair human terminal erythroid differentiation | Cultured cells | Human | GLUT1 Deficiency Syndrome | University of Colorado | LC-MS |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Adipose tissue | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Blood | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Heart | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Intestine | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Kidney | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Liver | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Muscle | Mouse | North Carolina State University | LC-MS | |
| ST003055 | AN005009 | Lipidomics analysis of the liver of THRB deficient (THRBKO) mice under normal chow conditions | Liver | Mouse | University of Luebeck | LC-MS | |
| ST003044 | AN004993 | A High-Fat Eucaloric Diet Induces Reprometabolic Syndrome of Obesity in Normal Weight Women - lipidomics | Blood | Human | Obesity | University of Colorado Denver | LC-MS |
| ST003038 | AN004985 | Untargeted lipidomics of WT and Cyp2c44(-/-) mice liver. | Liver | Mouse | Diabetes | Vanderbilt University Medical Center | LC-MS |
| ST002977 | AN004887 | Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant | Feces | Human | University of Michigan | LC-MS | |
| ST002911 | AN004780 | LiLA: Lipid Lung-based ATLAS built Through a Comprehensive Workflow Designed for an Accurate Lipid Annotation | Lung | Mouse | Tuberculosis | Universidad CEU San Pablo | LC-MS |
| ST002858 | AN004686 | Intracerebroventricular Transplantation of Foetal Allogeneic Neural Stem Cells in Patients with Secondary Progressive Multiple Sclerosis (hNSC-SPMS): a phase I dose-escalation clinical trial - Metabolomics Analysis of Human Serum | Blood | Human | Multiple sclerosis | University of Colorado Anschutz Medical Campus | GC-MS/LC-MS |
| ST002787 | AN004535 | Metabolomic analysis of gut metabolites in colorectal cancer patients: correlation with disease development and outcome | Feces | Human | Cancer | Wuhan University of Science and Technology | LC-MS |
| ST002747 | AN004457 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Human | CZ Biohub | LC-MS | |
| ST002747 | AN004457 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Rickettsia parkeri | CZ Biohub | LC-MS | |
| ST002713 | AN004397 | Ranolazine induced metabolic rewiring improves melanoma responses to targeted therapy and immunotherapy - lipidomics | Cultured cells | Human | Cancer | University of Colorado Denver | LC-MS |
| ST002691 | AN004364 | MoTrPAC: Endurance exercise training study in young adult rats, Rat White Adipose Powder - Untargeted Lipidomics, Reversed-Phase Positive | White adipose | Rat | Georgia Institute of Technology | LC-MS | |
| ST002690 | AN004363 | MoTrPAC: Endurance exercise training study in young adult rats, Rat White Adipose Powder - Untargeted Lipidomics, Reversed-Phase Negative | White adipose | Rat | Georgia Institute of Technology | LC-MS | |
| ST002685 | AN004358 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Brown Adipose Powder - Untargeted Lipidomics, Reversed-Phase Positive | Brown adipose | Rat | Georgia Institute of Technology | LC-MS | |
| ST002684 | AN004357 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Brown Adipose Powder - Untargeted Lipidomics, Reversed-Phase Negative | Brown adipose | Rat | Georgia Institute of Technology | LC-MS | |
| ST002678 | AN004350 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Liver Powder - Untargeted Lipidomics, Reversed-Phase Positive | Liver | Rat | Georgia Institute of Technology | LC-MS | |
| ST002677 | AN004349 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Liver Powder - Untargeted Lipidomics, Reversed-Phase Negative | Liver | Rat | Georgia Institute of Technology | LC-MS | |
| ST002671 | AN004343 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Lung Powder - Untargeted Lipidomics, Reversed-Phase Positive | Lung | Rat | Georgia Institute of Technology | LC-MS | |
| ST002670 | AN004342 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Lung Powder - Untargeted Lipidomics, Reversed-Phase Negative | Lung | Rat | Georgia Institute of Technology | LC-MS | |
| ST002657 | AN004329 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Kidney Powder - Untargeted Lipidomics, Reversed-Phase Positive | Kidney | Rat | Georgia Institute of Technology | LC-MS | |
| ST002656 | AN004328 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Kidney Powder - Untargeted Lipidomics, Reversed-Phase Negative | Kidney | Rat | Georgia Institute of Technology | LC-MS | |
| ST002651 | AN004323 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Heart Powder - Untargeted Lipidomics, Reversed-Phase Negative | Heart | Rat | Georgia Institute of Technology | LC-MS | |
| ST002645 | AN004317 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Gastrocnemius Powder - Untargeted Lipidomics, Reversed-Phase Positive | Gastrocnemius | Rat | Georgia Institute of Technology | LC-MS | |
| ST002644 | AN004316 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Gastrocnemius Powder - Untargeted Lipidomics, Reversed-Phase Negative | Gastrocnemius | Rat | Georgia Institute of Technology | LC-MS | |
| ST002637 | AN004309 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Hippocampus Powder - Untargeted Lipidomics, Reversed-Phase Positive | Hippocampus | Rat | Georgia Institute of Technology | LC-MS | |
| ST002636 | AN004308 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Hippocampus Powder - Untargeted Lipidomics, Reversed-Phase Negative | Hippocampus | Rat | Georgia Institute of Technology | LC-MS | |
| ST002631 | AN004303 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Plasma - Untargeted Lipidomics, Reversed-Phase Positive | Blood | Rat | Georgia Institute of Technology | LC-MS | |
| ST002630 | AN004302 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Plasma - Untargeted Lipidomics, Reversed-Phase Negative | Blood | Rat | Georgia Institute of Technology | LC-MS | |
| ST002522 | AN004156 | Lipidomics study on the effect of LBP protein on hepatic lipid composition in mice | Liver | Mouse | Oxidative stress | University of Science and Technology of China | LC-MS |
| ST002505 | AN004127 | A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) | Cultured cells | Human | Cancer | University of Science and Technology of China | LC-MS |
| ST002452 | AN004008 | Lipidomic analysis of human brain from frontotemporal dementia cases of with GRN and C9orf72 mutations | Brain | Human | Dementia | University of Sydney | LC-MS |
| ST002414 | AN003935 | Mass spectrometry dataset of LC-MS Lipidomics Analysis of Xenopus Laevis Optic Nerve | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST002413 | AN003933 | IFN-inducible phospholipid levels govern endosomal antiviral immunity | Cultured cells | Human | University of Colorado Denver | LC-MS | |
| ST002398 | AN003905 | Lipidomics of Tango2 Deficient and Wildtype Zebrafish Muscle Tissue | Muscle | Zebrafish | Myopathy | University of North Carolina at Chapel Hill | LC-MS |
| ST002283 | AN003731 | The “ForensOMICS” approach to forensic post-mortem interval estimation: combining metabolomics, lipidomics and proteomics for the analysis human skeletal remains | Bone | Human | University of Central Lancashire | LC-MS | |
| ST002162 | AN003542 | CFAP418 participates in membrane-associated cellular processes through binding lipids during ciliogenesis | Eye tissue | Mouse | Eye disease | University of Utah - Metabolomics Core | LC-MS |
| ST002162 | AN003543 | CFAP418 participates in membrane-associated cellular processes through binding lipids during ciliogenesis | Eye tissue | Mouse | Eye disease | University of Utah - Metabolomics Core | LC-MS |
| ST002145 | AN003511 | The Carbohydrate Sensing Transcription Factor ChREBP Links Mitochondrial Lipidomes to Mitochondrial Dynamics and Progression of Diabetic Nephropathy | Cultured cells | Mouse | Diabetes | University of Texas MD Anderson Cancer Center | LC-MS |
| ST002145 | AN003512 | The Carbohydrate Sensing Transcription Factor ChREBP Links Mitochondrial Lipidomes to Mitochondrial Dynamics and Progression of Diabetic Nephropathy | Cultured cells | Mouse | Diabetes | University of Texas MD Anderson Cancer Center | LC-MS |
| ST002093 | AN003419 | Lipidomics of High Fat vs Control Mice | Lung | Mouse | Obesity | University of North Carolina at Chapel Hill | LC-MS |
| ST002070 | AN003375 | Lipidomic Comparison of 2D and 3D Colon Cancer Cell Culture Models | Cultured cells | Human | Cancer | Ohio State University | LC-MS |
| ST001958 | AN003193 | Data on changes in lipid profiles during differentiation and maturation of human subcutaneous white adipocytes analyzed using chromatographic and bioinformatics tools | Adipose tissue | Human | Hamamatsu University School of Medicine | LC-MS | |
| ST001950 | AN003174 | Lipidome Alterations Following Mild Traumatic Brain Injury. | Blood | Rat | Traumatic brain injury | Georgia Institute of Technology | LC-MS |
| ST001950 | AN003175 | Lipidome Alterations Following Mild Traumatic Brain Injury. | Blood | Rat | Traumatic brain injury | Georgia Institute of Technology | LC-MS |
| ST001849 | AN002996 | Longitudinal Metabolomics of Human Plasma Reveals Robust Prognostic Markers of COVID-19 Disease Severity (part I) | Blood | Human | COVID-19 | Washington University in St. Louis | LC-MS |
| ST001725 | AN002810 | Lipidomics dataset of Danio rerio optic nerve regeneration model | Eye tissue | Zebrafish | Eye disease | University of Miami | LC-MS |
| ST001477 | AN002453 | Lipidomics dataset of PTEN deletion-induced nerve regeneration mouse model | Eye tissue | Mouse | Eye disease | University of Miami | LC-MS |
| ST001267 | AN002104 | Mass spectrometry-based lipidomics of oral squamous cell carcinoma tissue reveals aberrant cholesterol and glycerophospholipid metabolism | Tongue | Human | Cancer | University of Helsinki | MS(Dir. Inf.) |