List of Studies ( Metabolite:PE O-18:1/20:3)
| Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Analysis Type |
|---|---|---|---|---|---|---|---|
| ST004168 | AN006919 | Integrative brain omics approach highlights sn-1 lysophosphatidylethanolamine in Alzheimer's dementia | Brain | Human | Alzheimers disease | Emory University | LC-MS |
| ST004167 | AN006918 | Targeted Lipidomic Profiling of STBD1 Knockdown in Clear Cell Renal Carcinoma Cells | Renal cancer cells | Human | Cancer | The Affiliated Cancer Hospital of Zhengzhou University | LC-MS |
| ST004039 | AN006678 | Soma to neuron communication links stress adaptation to stress avoidance behavior | Worms | C. elegans | Stress | University of Pittsburgh | LC-MS |
| ST004002 | AN006601 | A deep, quantitative lipid atlas of extracellular vesicles across multiple cell lines | Extracellular vescicles | Human | Cancer | European Molecular Biology Laboratory | LC-MS |
| ST004002 | AN006601 | A deep, quantitative lipid atlas of extracellular vesicles across multiple cell lines | Extracellular vescicles | Mouse | Cancer | European Molecular Biology Laboratory | LC-MS |
| ST003751 | AN006158 | Comprehensive Lipidomic Analysis Identifies Critical Lipid and Metabolic Pathway Shifts in Alport Syndrome | Blood | Human | Kidney disease | Universidad CEU San Pablo | LC-MS |
| ST003751 | AN006158 | Comprehensive Lipidomic Analysis Identifies Critical Lipid and Metabolic Pathway Shifts in Alport Syndrome | Urine | Human | Kidney disease | Universidad CEU San Pablo | LC-MS |
| ST003751 | AN006159 | Comprehensive Lipidomic Analysis Identifies Critical Lipid and Metabolic Pathway Shifts in Alport Syndrome | Blood | Human | Kidney disease | Universidad CEU San Pablo | LC-MS |
| ST003751 | AN006159 | Comprehensive Lipidomic Analysis Identifies Critical Lipid and Metabolic Pathway Shifts in Alport Syndrome | Urine | Human | Kidney disease | Universidad CEU San Pablo | LC-MS |
| ST003717 | AN006098 | Lipidomics analysis of mouse pancreatic cancer cells cultured RPMI, TIFM, or TIFM + arginine under lipid deprivation | Cultured cells | Mouse | Cancer | University of Chicago | LC-MS |
| ST003715 | AN006096 | Lipidomics analysis of mouse PDAC cell lines treated with tung oil | Cultured cells | Mouse | Cancer | University of Chicago | LC-MS |
| ST003714 | AN006095 | Lipidomics analysis of mouse PDAC cell lines treated with alpha-eleostearic acid | Cultured cells | Mouse | Cancer | University of Chicago | LC-MS |
| ST003703 | AN006075 | NAD Depletion in Skeletal Muscle does not Compromise Muscle Function or Accelerate Aging | Muscle | Mouse | Sarcopenia | University of Copenhagen | LC-MS |
| ST003694 | AN006060 | FOLFIRINOX effects on lipidomics in pancreatic cancer cells | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003672 | AN006030 | Advanced Lipidomics Using UHPLC-ESI-QTOF-MS/MS Reveals Novel Lipids in Hibernating Syrian Hamsters | Brain | Golden hamster | Universidad CEU San Pablo | LC-MS | |
| ST003664 | AN006020 | Tumour interstitial fluid-enriched phosphoethanolamine suppresses T cell function. | T-cells | Mouse | Cancer | University of Chicago | LC-MS |
| ST003632 | AN005965 | Dysregulated Lipid Metabolism in African American Women Who Experienced Cardiometabolic Complications of Pregnancy | Blood | Human | Preeclampsia | Emory University | LC-MS |
| ST003629 | AN005961 | Impact of human PSMC5 gene mutations on neuronal development: Lipid profiling of PSMC5 mutant T cells | T-cells | Human | Brain disease | Leibniz Institute for Plasma Science and Technology | LC-MS |
| ST003629 | AN005962 | Impact of human PSMC5 gene mutations on neuronal development: Lipid profiling of PSMC5 mutant T cells | T-cells | Human | Brain disease | Leibniz Institute for Plasma Science and Technology | LC-MS |
| ST003452 | AN005669 | Integrated Proteomic and Lipidomic Analysis | Adipose tissue | Human | Obesity | Hamamatsu University School of Medicine | LC-MS |
| ST003426 | AN005626 | Metabolomic and transcriptomic remodeling of bone marrow myeloid cells in response to maternal obesity | Bone marrow | Mouse | Cardiovascular disease | Oregon Health and Science University | LC-MS |
| ST003426 | AN005626 | Metabolomic and transcriptomic remodeling of bone marrow myeloid cells in response to maternal obesity | Bone marrow | Mouse | Metabolic syndrome | Oregon Health and Science University | LC-MS |
| ST003426 | AN005626 | Metabolomic and transcriptomic remodeling of bone marrow myeloid cells in response to maternal obesity | Bone marrow | Mouse | Obesity | Oregon Health and Science University | LC-MS |
| ST003341 | AN005476 | Untargeted Lipidomic Profiling of Canine Cancer Cell Lines | Cultured cells | Dog | Cancer | Kojin Therapeutics, Inc. | LC-MS |
| ST003326 | AN005448 | Lipidome profiling in non-alcoholic steatohepatitis identifies phosphatidylserine synthase 1 as a regulator of hepatic lipoprotein metabolism | Liver | Mouse | Liver disease | University of Melbourne | LC-MS |
| ST003293 | AN005392 | High Fat Feeding Alters Circulating Triglyceride Profile by Decreasing SCD Activity and Depleting omega-3 Fatty Acids | Blood | Rat | Hyperlipidemia | University of Southern California | LC-MS |
| ST003225 | AN005287 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Chiasm | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003225 | AN005287 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Chiasm | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003225 | AN005288 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Chiasm | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003225 | AN005288 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Chiasm | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003222 | AN005283 | A small molecule macrophage migration inhibitory factor agonist ameliorates age-related myocardial intolerance to ischemia-reperfusion insults via metabolic regulation - Part 1 | Heart | Mouse | Ischemia | University of Mississippi Medical Center | LC-MS |
| ST003185 | AN005232 | A multimodal drug-diet-immunotherapy combination restrains melanoma progression and metastasis - plasma lipidomics | Blood | Mouse | Cancer | University of Colorado Anschutz Medical Campus | LC-MS |
| ST003184 | AN005228 | A multimodal drug-diet-immunotherapy combination restrains melanoma progression and metastasis - tumor lipidomics | Tumor cells | Mouse | Cancer | University of Colorado Anschutz Medical Campus | LC-MS |
| ST003130 | AN005134 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Maternal blood | Blood | Mouse | University of Copenhagen | LC-MS | |
| ST003129 | AN005131 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Maternal liver | Liver | Mouse | University of Copenhagen | LC-MS | |
| ST003125 | AN005124 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Fetal liver | Liver | Mouse | Maternal immune system activation | University of Copenhagen | LC-MS |
| ST003108 | AN005089 | Complete absence of GLUT1 does not impair human terminal erythroid differentiation | Cultured cells | Human | GLUT1 Deficiency Syndrome | University of Colorado | LC-MS |
| ST003038 | AN004985 | Untargeted lipidomics of WT and Cyp2c44(-/-) mice liver. | Liver | Mouse | Diabetes | Vanderbilt University Medical Center | LC-MS |
| ST002967 | AN004875 | Lipidomics study of FASN inhibition in HT-29 and HCT 116 spheroids | Cultured cells | Human | Cancer | Ohio State University | LC-MS |
| ST002911 | AN004780 | LiLA: Lipid Lung-based ATLAS built Through a Comprehensive Workflow Designed for an Accurate Lipid Annotation | Lung | Mouse | Tuberculosis | Universidad CEU San Pablo | LC-MS |
| ST002747 | AN004457 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Human | CZ Biohub | LC-MS | |
| ST002747 | AN004457 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Rickettsia parkeri | CZ Biohub | LC-MS | |
| ST002636 | AN004308 | MoTrPAC: Endurance exercise training study in young adult rats, Rat Hippocampus Powder - Untargeted Lipidomics, Reversed-Phase Negative | Hippocampus | Rat | Georgia Institute of Technology | LC-MS | |
| ST002522 | AN004155 | Lipidomics study on the effect of LBP protein on hepatic lipid composition in mice | Liver | Mouse | Oxidative stress | University of Science and Technology of China | LC-MS |
| ST002522 | AN004156 | Lipidomics study on the effect of LBP protein on hepatic lipid composition in mice | Liver | Mouse | Oxidative stress | University of Science and Technology of China | LC-MS |
| ST002505 | AN004127 | A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) | Cultured cells | Human | Cancer | University of Science and Technology of China | LC-MS |
| ST002452 | AN004008 | Lipidomic analysis of human brain from frontotemporal dementia cases of with GRN and C9orf72 mutations | Brain | Human | Dementia | University of Sydney | LC-MS |
| ST002414 | AN003935 | Mass spectrometry dataset of LC-MS Lipidomics Analysis of Xenopus Laevis Optic Nerve | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST002413 | AN003933 | IFN-inducible phospholipid levels govern endosomal antiviral immunity | Cultured cells | Human | University of Colorado Denver | LC-MS | |
| ST002398 | AN003905 | Lipidomics of Tango2 Deficient and Wildtype Zebrafish Muscle Tissue | Muscle | Zebrafish | Myopathy | University of North Carolina at Chapel Hill | LC-MS |
| ST002162 | AN003542 | CFAP418 participates in membrane-associated cellular processes through binding lipids during ciliogenesis | Eye tissue | Mouse | Eye disease | University of Utah - Metabolomics Core | LC-MS |
| ST002162 | AN003543 | CFAP418 participates in membrane-associated cellular processes through binding lipids during ciliogenesis | Eye tissue | Mouse | Eye disease | University of Utah - Metabolomics Core | LC-MS |
| ST002145 | AN003511 | The Carbohydrate Sensing Transcription Factor ChREBP Links Mitochondrial Lipidomes to Mitochondrial Dynamics and Progression of Diabetic Nephropathy | Cultured cells | Mouse | Diabetes | University of Texas MD Anderson Cancer Center | LC-MS |
| ST002145 | AN003512 | The Carbohydrate Sensing Transcription Factor ChREBP Links Mitochondrial Lipidomes to Mitochondrial Dynamics and Progression of Diabetic Nephropathy | Cultured cells | Mouse | Diabetes | University of Texas MD Anderson Cancer Center | LC-MS |
| ST002093 | AN003419 | Lipidomics of High Fat vs Control Mice | Lung | Mouse | Obesity | University of North Carolina at Chapel Hill | LC-MS |
| ST002070 | AN003375 | Lipidomic Comparison of 2D and 3D Colon Cancer Cell Culture Models | Cultured cells | Human | Cancer | Ohio State University | LC-MS |
| ST001849 | AN002996 | Longitudinal Metabolomics of Human Plasma Reveals Robust Prognostic Markers of COVID-19 Disease Severity (part I) | Blood | Human | COVID-19 | Washington University in St. Louis | LC-MS |
| ST001725 | AN002810 | Lipidomics dataset of Danio rerio optic nerve regeneration model | Eye tissue | Zebrafish | Eye disease | University of Miami | LC-MS |
| ST001477 | AN002453 | Lipidomics dataset of PTEN deletion-induced nerve regeneration mouse model | Eye tissue | Mouse | Eye disease | University of Miami | LC-MS |
| ST001267 | AN002104 | Mass spectrometry-based lipidomics of oral squamous cell carcinoma tissue reveals aberrant cholesterol and glycerophospholipid metabolism | Tongue | Human | Cancer | University of Helsinki | MS(Dir. Inf.) |
| ST001140 | AN001870 | Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure | Blood | Dog | National University of Singapore;University of Zurich | LC-MS |