List of Studies ( Metabolite:PE O-18:2/20:4)
| Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Analysis Type |
|---|---|---|---|---|---|---|---|
| ST004300 | AN007153 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Brain | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004300 | AN007153 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Liver | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004300 | AN007155 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Brain | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004300 | AN007155 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Liver | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004168 | AN006919 | Integrative brain omics approach highlights sn-1 lysophosphatidylethanolamine in Alzheimer's dementia | Brain | Human | Alzheimers disease | Emory University | LC-MS |
| ST003945 | AN006485 | Lipidomics characterization of A375 and A375-VR melanoma cells treated with ranolazine and sampled longitudinally. | Cultured cells | Human | Cancer | University of Colorado Denver | LC-MS |
| ST003792 | AN006233 | Untargeted lipidomics characterization of blood samples from patients with maple syrup urine disease (MSUD) in comparison to healthy controls | Blood | Human | Maple syrup urinary disease | University of Colorado Denver | LC-MS |
| ST003792 | AN006233 | Untargeted lipidomics characterization of blood samples from patients with maple syrup urine disease (MSUD) in comparison to healthy controls | Blood | Human | Metabolic disease | University of Colorado Denver | LC-MS |
| ST003760 | AN006175 | Untargeted lipidomics of combination gemcitabine/paclitaxel attenuated (CombAT) PDAC cells | Pancreas | Human | Cancer | Victor Chang Cardiac Research Institute | LC-MS |
| ST003734 | AN006127 | Altered Omega-6/Omega-3 PUFA Ratios and Phospholipid Profiles in CFTR-Mutant PANC-1 Cells Reveal Novel Links Between CFTR Function and Lipid Metabolism | Pancreas | Human | Cancer | Changhai Hospital | LC-MS |
| ST003694 | AN006060 | FOLFIRINOX effects on lipidomics in pancreatic cancer cells | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003637 | AN005974 | lomitapide effects on lipidomics | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003636 | AN005969 | Individual glycemic responses to carbohydrates vary and reflect underlying metabolic physiology (metabolomics) | Blood | Human | Cardiovascular disease | Stanford University | LC-MS |
| ST003636 | AN005969 | Individual glycemic responses to carbohydrates vary and reflect underlying metabolic physiology (metabolomics) | Blood | Human | Diabetes | Stanford University | LC-MS |
| ST003636 | AN005971 | Individual glycemic responses to carbohydrates vary and reflect underlying metabolic physiology (metabolomics) | Blood | Human | Cardiovascular disease | Stanford University | LC-MS |
| ST003636 | AN005971 | Individual glycemic responses to carbohydrates vary and reflect underlying metabolic physiology (metabolomics) | Blood | Human | Diabetes | Stanford University | LC-MS |
| ST003632 | AN005965 | Dysregulated Lipid Metabolism in African American Women Who Experienced Cardiometabolic Complications of Pregnancy | Blood | Human | Preeclampsia | Emory University | LC-MS |
| ST003629 | AN005961 | Impact of human PSMC5 gene mutations on neuronal development: Lipid profiling of PSMC5 mutant T cells | T-cells | Human | Brain disease | Leibniz Institute for Plasma Science and Technology | LC-MS |
| ST003629 | AN005962 | Impact of human PSMC5 gene mutations on neuronal development: Lipid profiling of PSMC5 mutant T cells | T-cells | Human | Brain disease | Leibniz Institute for Plasma Science and Technology | LC-MS |
| ST003622 | AN005950 | A multi-omic census reveals obesity-associated microRNA miR-let-7 as novel instigator of adipose mitochondrial dysfunction and of intergenerational metabolic decline. | Blood | Mouse | Obesity | University of Southern Denmark | LC-MS |
| ST003469 | AN005703 | Lipidomics of mice white adipose tissue to support understanding of early metabolic shift in presymptomatic sepsis patients. (Part14 mice white adipose tissue lipid) | Adipose tissue | Mouse | Sepsis | Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute | LC-MS |
| ST003465 | AN005695 | Lipidomics of mice kidney to support understanding of early metabolic shift in presymptomatic sepsis patients. (Part10 mice kidney lipid) | Kidney | Mouse | Sepsis | Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute | LC-MS |
| ST003452 | AN005669 | Integrated Proteomic and Lipidomic Analysis | Adipose tissue | Human | Obesity | Hamamatsu University School of Medicine | LC-MS |
| ST003426 | AN005626 | Metabolomic and transcriptomic remodeling of bone marrow myeloid cells in response to maternal obesity | Bone marrow | Mouse | Cardiovascular disease | Oregon Health and Science University | LC-MS |
| ST003426 | AN005626 | Metabolomic and transcriptomic remodeling of bone marrow myeloid cells in response to maternal obesity | Bone marrow | Mouse | Metabolic syndrome | Oregon Health and Science University | LC-MS |
| ST003426 | AN005626 | Metabolomic and transcriptomic remodeling of bone marrow myeloid cells in response to maternal obesity | Bone marrow | Mouse | Obesity | Oregon Health and Science University | LC-MS |
| ST003328 | AN005452 | Increased Cholesterol Synthesis Drives Neurotoxicity in Patient Stem Cell-Derived Model of Multiple Sclerosis - cellular lipidomics | Stem cells | Human | Multiple sclerosis | University of Colorado Denver | LC-MS |
| ST003326 | AN005448 | Lipidome profiling in non-alcoholic steatohepatitis identifies phosphatidylserine synthase 1 as a regulator of hepatic lipoprotein metabolism | Liver | Mouse | Liver disease | University of Melbourne | LC-MS |
| ST003275 | AN005363 | Lipidomics analysis within healthy donors and end-stage heart failure with a focus on ischaemic cardiomyopathy with diabetes | Heart | Human | Heart disease | University of Sydney | LC-MS |
| ST003250 | AN005324 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Tectum | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003250 | AN005324 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Tectum | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003241 | AN005310 | Lipidomic analysis of lung from Gclc WT and whole-body Gclc KO mice. | Lung | Mouse | Oxidative stress | University of Rochester Medical Center | LC-MS |
| ST003241 | AN005310 | Lipidomic analysis of lung from Gclc WT and whole-body Gclc KO mice. | Lung | Mouse | Stress | University of Rochester Medical Center | LC-MS |
| ST003226 | AN005289 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003226 | AN005289 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003226 | AN005290 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003226 | AN005290 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003225 | AN005288 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Chiasm | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003225 | AN005288 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Chiasm | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003222 | AN005283 | A small molecule macrophage migration inhibitory factor agonist ameliorates age-related myocardial intolerance to ischemia-reperfusion insults via metabolic regulation - Part 1 | Heart | Mouse | Ischemia | University of Mississippi Medical Center | LC-MS |
| ST003168 | AN005199 | Lipidomic analysis of cryopreserved human cardiac tissue from young and ageing adults | Heart | Human | Heart disease | University of Sydney | LC-MS |
| ST003130 | AN005133 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Maternal blood | Blood | Mouse | University of Copenhagen | LC-MS | |
| ST003125 | AN005123 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Fetal liver | Liver | Mouse | Maternal immune system activation | University of Copenhagen | LC-MS |
| ST003125 | AN005124 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Fetal liver | Liver | Mouse | Maternal immune system activation | University of Copenhagen | LC-MS |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Adipose tissue | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Blood | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Heart | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Intestine | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Kidney | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Liver | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Muscle | Mouse | North Carolina State University | LC-MS | |
| ST003038 | AN004985 | Untargeted lipidomics of WT and Cyp2c44(-/-) mice liver. | Liver | Mouse | Diabetes | Vanderbilt University Medical Center | LC-MS |
| ST002911 | AN004780 | LiLA: Lipid Lung-based ATLAS built Through a Comprehensive Workflow Designed for an Accurate Lipid Annotation | Lung | Mouse | Tuberculosis | Universidad CEU San Pablo | LC-MS |
| ST002858 | AN004686 | Intracerebroventricular Transplantation of Foetal Allogeneic Neural Stem Cells in Patients with Secondary Progressive Multiple Sclerosis (hNSC-SPMS): a phase I dose-escalation clinical trial - Metabolomics Analysis of Human Serum | Blood | Human | Multiple sclerosis | University of Colorado Anschutz Medical Campus | GC-MS/LC-MS |
| ST002787 | AN004535 | Metabolomic analysis of gut metabolites in colorectal cancer patients: correlation with disease development and outcome | Feces | Human | Cancer | Wuhan University of Science and Technology | LC-MS |
| ST002747 | AN004457 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Human | CZ Biohub | LC-MS | |
| ST002747 | AN004457 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Rickettsia parkeri | CZ Biohub | LC-MS | |
| ST002452 | AN004008 | Lipidomic analysis of human brain from frontotemporal dementia cases of with GRN and C9orf72 mutations | Brain | Human | Dementia | University of Sydney | LC-MS |
| ST002414 | AN003935 | Mass spectrometry dataset of LC-MS Lipidomics Analysis of Xenopus Laevis Optic Nerve | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST002398 | AN003905 | Lipidomics of Tango2 Deficient and Wildtype Zebrafish Muscle Tissue | Muscle | Zebrafish | Myopathy | University of North Carolina at Chapel Hill | LC-MS |
| ST002162 | AN003542 | CFAP418 participates in membrane-associated cellular processes through binding lipids during ciliogenesis | Eye tissue | Mouse | Eye disease | University of Utah - Metabolomics Core | LC-MS |
| ST002162 | AN003543 | CFAP418 participates in membrane-associated cellular processes through binding lipids during ciliogenesis | Eye tissue | Mouse | Eye disease | University of Utah - Metabolomics Core | LC-MS |
| ST002145 | AN003511 | The Carbohydrate Sensing Transcription Factor ChREBP Links Mitochondrial Lipidomes to Mitochondrial Dynamics and Progression of Diabetic Nephropathy | Cultured cells | Mouse | Diabetes | University of Texas MD Anderson Cancer Center | LC-MS |
| ST002145 | AN003512 | The Carbohydrate Sensing Transcription Factor ChREBP Links Mitochondrial Lipidomes to Mitochondrial Dynamics and Progression of Diabetic Nephropathy | Cultured cells | Mouse | Diabetes | University of Texas MD Anderson Cancer Center | LC-MS |
| ST002093 | AN003419 | Lipidomics of High Fat vs Control Mice | Lung | Mouse | Obesity | University of North Carolina at Chapel Hill | LC-MS |
| ST001958 | AN003193 | Data on changes in lipid profiles during differentiation and maturation of human subcutaneous white adipocytes analyzed using chromatographic and bioinformatics tools | Adipose tissue | Human | Hamamatsu University School of Medicine | LC-MS | |
| ST001849 | AN002996 | Longitudinal Metabolomics of Human Plasma Reveals Robust Prognostic Markers of COVID-19 Disease Severity (part I) | Blood | Human | COVID-19 | Washington University in St. Louis | LC-MS |
| ST001725 | AN002810 | Lipidomics dataset of Danio rerio optic nerve regeneration model | Eye tissue | Zebrafish | Eye disease | University of Miami | LC-MS |
| ST001477 | AN002453 | Lipidomics dataset of PTEN deletion-induced nerve regeneration mouse model | Eye tissue | Mouse | Eye disease | University of Miami | LC-MS |
| ST001267 | AN002104 | Mass spectrometry-based lipidomics of oral squamous cell carcinoma tissue reveals aberrant cholesterol and glycerophospholipid metabolism | Tongue | Human | Cancer | University of Helsinki | MS(Dir. Inf.) |
| ST001154 | AN001943 | A comprehensive plasma metabolomics dataset for a cohort of mouse knockouts within the International Mouse Phenotyping Consortium | Blood | Mouse | University of California, Davis | GC-MS/LC-MS | |
| ST000539 | AN000818 | Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes (part II) | Cells | Human | Monash University | LC-MS | |
| ST000414 | AN000655 | Metabolomics-based screening of the Malaria Box reveals both novel and established mechanisms of action | Cells | Plasmodium falciparum | Malaria | Monash Institute of Pharmaceutical Sciences | LC-MS |
| ST000403 | AN000642 | Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes | Cells | Human | Monash Institute of Pharmaceutical Sciences | LC-MS |