List of Studies ( Metabolite:PG 18:1/18:1)
| Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Analysis Type |
|---|---|---|---|---|---|---|---|
| ST004300 | AN007152 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Brain | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004300 | AN007152 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Liver | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004300 | AN007154 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Brain | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004300 | AN007154 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Liver | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004287 | AN007128 | Lipidomic profiling of PILRAKO xMG in xenotransplant model after mouse microglia(mMg) depletion | Microglia | Human | Alzheimers disease | Denali Therapeutics | LC-MS |
| ST004223 | AN007028 | Sulfatide deficiency-induced astrogliosis and myelin lipid dyshomeostasis are independent of Trem2-mediated microglial activation | Brain | Mouse | Alzheimers disease | UT Health San Antonio | MS(Dir. Inf.) |
| ST004223 | AN007028 | Sulfatide deficiency-induced astrogliosis and myelin lipid dyshomeostasis are independent of Trem2-mediated microglial activation | Spinal cord | Mouse | Alzheimers disease | UT Health San Antonio | MS(Dir. Inf.) |
| ST004217 | AN007016 | Lipid Alterations in ASAH1-Deficient Cells: Insights into Ceramide Accumulation and Lysosomal Dysfunction | Cultured cells | Human | Metabolic disease | Harvard Medical School | LC-MS |
| ST004206 | AN006996 | Lipidomic Profiling of Sorted Microglia in GPR34-KO/APP-KI Mice Across 4, 8, 16, and 24 Months | Glial cells | Mouse | Neurodegenerative disease | Denali Therapeutics | LC-MS |
| ST004205 | AN006993 | Lipidomic/Metabolomic Characterization of GPR34 KO, WT, TREM2 KO, and GPR34/TREM2 dKO iPSC1-derived microglia | Glial cells | Human | Neurodegenerative disease | Denali Therapeutics | LC-MS |
| ST004168 | AN006919 | Integrative brain omics approach highlights sn-1 lysophosphatidylethanolamine in Alzheimer's dementia | Brain | Human | Alzheimers disease | Emory University | LC-MS |
| ST004167 | AN006918 | Targeted Lipidomic Profiling of STBD1 Knockdown in Clear Cell Renal Carcinoma Cells | Renal cancer cells | Human | Cancer | The Affiliated Cancer Hospital of Zhengzhou University | LC-MS |
| ST004163 | AN006909 | Targeted Lipid Profiling of HEK and iPSC derived iMG Cell Models with GBA1 Loss-of-Function | Cultured cells | Human | Metabolic disease | Denali Therapeutics | LC-MS |
| ST004163 | AN006909 | Targeted Lipid Profiling of HEK and iPSC derived iMG Cell Models with GBA1 Loss-of-Function | Cultured cells | Human | Parkinsons disease | Denali Therapeutics | LC-MS |
| ST004118 | AN006828 | Lipidomics on Hep3B Cells Overexpressing CGI-158 and PNPLA2 | Cultured cells | Human | Liver disease; Cancer | Amgen | LC-MS |
| ST004118 | AN006829 | Lipidomics on Hep3B Cells Overexpressing CGI-158 and PNPLA2 | Cultured cells | Human | Liver disease; Cancer | Amgen | LC-MS |
| ST004059 | AN006715 | Targeted Lipid and Metabolite Profiling in Brains of ATP13A2 Knockout Mice | Brain | Mouse | Neurodegenerative disease | Denali Therapeutics | LC-MS |
| ST004059 | AN006715 | Targeted Lipid and Metabolite Profiling in Brains of ATP13A2 Knockout Mice | Brain | Mouse | Parkinsons disease | Denali Therapeutics | LC-MS |
| ST004058 | AN006710 | Targeted Lipid and Metabolite Profiling in ATP13A2 knockout (KO) in HAP1 cells | Cultured cells | Human | Neurodegenerative disease | Denali Therapeutics | LC-MS |
| ST004058 | AN006710 | Targeted Lipid and Metabolite Profiling in ATP13A2 knockout (KO) in HAP1 cells | Cultured cells | Human | Parkinsons disease | Denali Therapeutics | LC-MS |
| ST004057 | AN006706 | Microglial and Non-Microglial Regulation of Lipid Metabolism in Alzheimer's Revealed by Genetic and Pharmacological Depletion | Brain | Human | Alzheimers disease | UT Health San Antonio | MS(Dir. Inf.) |
| ST004057 | AN006706 | Microglial and Non-Microglial Regulation of Lipid Metabolism in Alzheimer's Revealed by Genetic and Pharmacological Depletion | Brain | Mouse | Alzheimers disease | UT Health San Antonio | MS(Dir. Inf.) |
| ST004049 | AN006694 | Comparison of lipidome from phagosomes containing Pam3csk4-beads vs. uncoupled-beads | Macrophages | Mouse | St Jude Children's Research Hospital | LC-MS | |
| ST004049 | AN006695 | Comparison of lipidome from phagosomes containing Pam3csk4-beads vs. uncoupled-beads | Macrophages | Mouse | St Jude Children's Research Hospital | LC-MS | |
| ST004039 | AN006678 | Soma to neuron communication links stress adaptation to stress avoidance behavior | Worms | C. elegans | Stress | University of Pittsburgh | LC-MS |
| ST004002 | AN006601 | A deep, quantitative lipid atlas of extracellular vesicles across multiple cell lines | Extracellular vescicles | Human | Cancer | European Molecular Biology Laboratory | LC-MS |
| ST004002 | AN006601 | A deep, quantitative lipid atlas of extracellular vesicles across multiple cell lines | Extracellular vescicles | Mouse | Cancer | European Molecular Biology Laboratory | LC-MS |
| ST003972 | AN006541 | Lipid cargo profiling of human brain-derived extracellular vesicles by APOE genotype in Alzheimer’s Disease | Brain | Human | Alzheimers disease | Mayo Clinic | MS(Dir. Inf.) |
| ST003760 | AN006175 | Untargeted lipidomics of combination gemcitabine/paclitaxel attenuated (CombAT) PDAC cells | Pancreas | Human | Cancer | Victor Chang Cardiac Research Institute | LC-MS |
| ST003758 | AN006171 | Untargeted lipidomics of gemcitabine-resistant cells | Pancreas | Human | Cancer | Victor Chang Cardiac Research Institute | LC-MS |
| ST003757 | AN006169 | Untargeted lipidomics of gemcitabine-resistant PDAC cells | Pancreas | Human | Cancer | Victor Chang Cardiac Research Institute | LC-MS |
| ST003737 | AN006135 | PILRA regulates microglial neuroinflammation and lipid metabolism as a candidate therapeutic target for Alzheimer’s disease | Microglia | Human | Alzheimers disease | Denali Therapeutics | LC-MS |
| ST003734 | AN006127 | Altered Omega-6/Omega-3 PUFA Ratios and Phospholipid Profiles in CFTR-Mutant PANC-1 Cells Reveal Novel Links Between CFTR Function and Lipid Metabolism | Pancreas | Human | Cancer | Changhai Hospital | LC-MS |
| ST003705 | AN006079 | Lipid Metabolite Profiling of nontuberculous mycobacterial pulmonary disease | Blood | Human | Lung disease | Seoul National University College of Medicine and Hospital | LC-MS |
| ST003703 | AN006076 | NAD Depletion in Skeletal Muscle does not Compromise Muscle Function or Accelerate Aging | Muscle | Mouse | Sarcopenia | University of Copenhagen | LC-MS |
| ST003694 | AN006060 | FOLFIRINOX effects on lipidomics in pancreatic cancer cells | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003678 | AN006039 | The effects of cystine limitation stress adaptation (CLSA) on lipidomics changes in pancreatic cancer cells | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003672 | AN006030 | Advanced Lipidomics Using UHPLC-ESI-QTOF-MS/MS Reveals Novel Lipids in Hibernating Syrian Hamsters | Brain | Golden hamster | Universidad CEU San Pablo | LC-MS | |
| ST003645 | AN005985 | Targeting the c-MYC/ELOVL6 Pathway Alters Cell Membrane Mechanics and Enhances Chemotherapeutic Efficacy in Pancreatic Cancer | Cultured cells | Human | Cancer | Universidad Francisco de Vitoria - Hospital 12 de Octubre | LC-MS |
| ST003637 | AN005974 | lomitapide effects on lipidomics | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003629 | AN005961 | Impact of human PSMC5 gene mutations on neuronal development: Lipid profiling of PSMC5 mutant T cells | T-cells | Human | Brain disease | Leibniz Institute for Plasma Science and Technology | LC-MS |
| ST003629 | AN005962 | Impact of human PSMC5 gene mutations on neuronal development: Lipid profiling of PSMC5 mutant T cells | T-cells | Human | Brain disease | Leibniz Institute for Plasma Science and Technology | LC-MS |
| ST003547 | AN005830 | Analysis of the fate of docosahexaenoic acid in HCT116 colorectal cancer cells cultured at pH 7.4 or 6.5. | Cultured cells | Human | Cancer | UCLouvain | LC-MS |
| ST003528 | AN005796 | Lipidomics profiling of livers from Alb-Cre +/- SART-/- (KO) versus age matched wild type WT mouse littermates to characterize progression to hepatic steatosis and hepatocellular carcinoma | Liver | Mouse | Cancer | University of Utah | LC-MS |
| ST003468 | AN005702 | Lipidomics of mice spleen to support understanding of early metabolic shift in presymptomatic sepsis patients. (Part13 mice spleen lipid) | Spleen | Mouse | Sepsis | Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute | LC-MS |
| ST003437 | AN005648 | White adipose tissue remodeling in Little Brown Myotis (Myotis lucifugus) with white-nose syndrome | Adipose tissue | Little brown bat | White-nose syndrome | Georgetown University | LC-MS |
| ST003426 | AN005626 | Metabolomic and transcriptomic remodeling of bone marrow myeloid cells in response to maternal obesity | Bone marrow | Mouse | Cardiovascular disease | Oregon Health and Science University | LC-MS |
| ST003426 | AN005626 | Metabolomic and transcriptomic remodeling of bone marrow myeloid cells in response to maternal obesity | Bone marrow | Mouse | Metabolic syndrome | Oregon Health and Science University | LC-MS |
| ST003426 | AN005626 | Metabolomic and transcriptomic remodeling of bone marrow myeloid cells in response to maternal obesity | Bone marrow | Mouse | Obesity | Oregon Health and Science University | LC-MS |
| ST003398 | AN005578 | Specific activation of the integrated stress response (ISR) uncovers regulation of lipid droplet biogenesis | Cultured cells | Human | Cancer | Calico Life Sciences | LC-MS |
| ST003364 | AN005511 | Deep lipidomic profiling reveals sex dimorphism of lipid metabolism in fibro-calcific aortic valve disease | Aortic valve tissue | Human | Heart disease | Technical University Dresden | LC-MS |
| ST003364 | AN005512 | Deep lipidomic profiling reveals sex dimorphism of lipid metabolism in fibro-calcific aortic valve disease | Aortic valve tissue | Human | Heart disease | Technical University Dresden | LC-MS |
| ST003364 | AN005513 | Deep lipidomic profiling reveals sex dimorphism of lipid metabolism in fibro-calcific aortic valve disease | Aortic valve tissue | Human | Heart disease | Technical University Dresden | LC-MS |
| ST003349 | AN005490 | An integrated LC-MS analysis of the biometric characteristics of different time cohorts of race walkers - targeted | Blood | Human | First Affiliated Hospital of Dalian Medical University | LC-MS | |
| ST003341 | AN005476 | Untargeted Lipidomic Profiling of Canine Cancer Cell Lines | Cultured cells | Dog | Cancer | Kojin Therapeutics, Inc. | LC-MS |
| ST003328 | AN005452 | Increased Cholesterol Synthesis Drives Neurotoxicity in Patient Stem Cell-Derived Model of Multiple Sclerosis - cellular lipidomics | Stem cells | Human | Multiple sclerosis | University of Colorado Denver | LC-MS |
| ST003326 | AN005448 | Lipidome profiling in non-alcoholic steatohepatitis identifies phosphatidylserine synthase 1 as a regulator of hepatic lipoprotein metabolism | Liver | Mouse | Liver disease | University of Melbourne | LC-MS |
| ST003318 | AN005432 | Kinetic changes in the phospholipid composition of fibroblasts induced by cytotoxic stress | Fibroblast cells | Mouse | Oxidative stress | University of Innsbruck | LC-MS |
| ST003290 | AN005389 | High expression of oleoyl-ACP-hydrolase underpins life-threatening respiratory viral diseases | Lung | Mouse | Viral infection | Peter Doherty Institute for Infection and Immunity | LC-MS |
| ST003275 | AN005363 | Lipidomics analysis within healthy donors and end-stage heart failure with a focus on ischaemic cardiomyopathy with diabetes | Heart | Human | Heart disease | University of Sydney | LC-MS |
| ST003250 | AN005324 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Tectum | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003250 | AN005324 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Tectum | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003246 | AN005317 | Effects of mitoregulin loss on cardiac and mitochondrial lipids in aged male mice | Heart | Mouse | Cardiovascular disease | University of Iowa | LC-MS |
| ST003240 | AN005308 | Lipidomic analysis of liver from Gclc WT and whole-body Gclc KO mice. | Liver | Mouse | Oxidative stress | University of Rochester Medical Center | LC-MS |
| ST003240 | AN005308 | Lipidomic analysis of liver from Gclc WT and whole-body Gclc KO mice. | Liver | Mouse | Stress | University of Rochester Medical Center | LC-MS |
| ST003225 | AN005287 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Chiasm | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003225 | AN005287 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Chiasm | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003184 | AN005229 | A multimodal drug-diet-immunotherapy combination restrains melanoma progression and metastasis - tumor lipidomics | Tumor cells | Mouse | Cancer | University of Colorado Anschutz Medical Campus | LC-MS |
| ST003168 | AN005199 | Lipidomic analysis of cryopreserved human cardiac tissue from young and ageing adults | Heart | Human | Heart disease | University of Sydney | LC-MS |
| ST003157 | AN005179 | Diet modulates the protective effects of dimethyl fumarate mediated by the immunometabolic neutrophil receptor HCA2 - Lipidomics | Blood | Mouse | Multiple sclerosis | University of Luebeck | LC-MS |
| ST003129 | AN005132 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Maternal liver | Liver | Mouse | University of Copenhagen | LC-MS | |
| ST003125 | AN005123 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Fetal liver | Liver | Mouse | Maternal immune system activation | University of Copenhagen | LC-MS |
| ST003125 | AN005124 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Fetal liver | Liver | Mouse | Maternal immune system activation | University of Copenhagen | LC-MS |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Adipose tissue | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Blood | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Heart | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Intestine | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Kidney | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Liver | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Muscle | Mouse | North Carolina State University | LC-MS | |
| ST003055 | AN005009 | Lipidomics analysis of the liver of THRB deficient (THRBKO) mice under normal chow conditions | Liver | Mouse | University of Luebeck | LC-MS | |
| ST003038 | AN004985 | Untargeted lipidomics of WT and Cyp2c44(-/-) mice liver. | Liver | Mouse | Diabetes | Vanderbilt University Medical Center | LC-MS |
| ST002967 | AN004875 | Lipidomics study of FASN inhibition in HT-29 and HCT 116 spheroids | Cultured cells | Human | Cancer | Ohio State University | LC-MS |
| ST002911 | AN004780 | LiLA: Lipid Lung-based ATLAS built Through a Comprehensive Workflow Designed for an Accurate Lipid Annotation | Lung | Mouse | Tuberculosis | Universidad CEU San Pablo | LC-MS |
| ST002911 | AN004781 | LiLA: Lipid Lung-based ATLAS built Through a Comprehensive Workflow Designed for an Accurate Lipid Annotation | Lung | Mouse | Tuberculosis | Universidad CEU San Pablo | LC-MS |
| ST002880 | AN004720 | Hypoxia-driven dynamics of tomato root lipidome | Roots | Tomato | Leibniz Institute for Plasma Science and Technology | LC-MS | |
| ST002809 | AN004569 | Role of cilia in mitochondrial function | Cultured cells | Dog | Kidney disease | Medical University of South Carolina | LC-MS |
| ST002809 | AN004569 | Role of cilia in mitochondrial function | Cultured cells | Mouse | Kidney disease | Medical University of South Carolina | LC-MS |
| ST002787 | AN004535 | Metabolomic analysis of gut metabolites in colorectal cancer patients: correlation with disease development and outcome | Feces | Human | Cancer | Wuhan University of Science and Technology | LC-MS |
| ST002747 | AN004457 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Human | CZ Biohub | LC-MS | |
| ST002747 | AN004457 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Rickettsia parkeri | CZ Biohub | LC-MS | |
| ST002713 | AN004397 | Ranolazine induced metabolic rewiring improves melanoma responses to targeted therapy and immunotherapy - lipidomics | Cultured cells | Human | Cancer | University of Colorado Denver | LC-MS |
| ST002713 | AN004398 | Ranolazine induced metabolic rewiring improves melanoma responses to targeted therapy and immunotherapy - lipidomics | Cultured cells | Human | Cancer | University of Colorado Denver | LC-MS |
| ST002522 | AN004156 | Lipidomics study on the effect of LBP protein on hepatic lipid composition in mice | Liver | Mouse | Oxidative stress | University of Science and Technology of China | LC-MS |
| ST002505 | AN004126 | A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) | Cultured cells | Human | Cancer | University of Science and Technology of China | LC-MS |
| ST002505 | AN004127 | A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) | Cultured cells | Human | Cancer | University of Science and Technology of China | LC-MS |
| ST002452 | AN004008 | Lipidomic analysis of human brain from frontotemporal dementia cases of with GRN and C9orf72 mutations | Brain | Human | Dementia | University of Sydney | LC-MS |
| ST002438 | AN003973 | Ozone alters glycosphingolipid metabolism and exacerbates characteristics of asthma in mice | Lung | Mouse | Asthma | University of California, Davis | LC-MS |
| ST002413 | AN003933 | IFN-inducible phospholipid levels govern endosomal antiviral immunity | Cultured cells | Human | University of Colorado Denver | LC-MS | |
| ST002398 | AN003905 | Lipidomics of Tango2 Deficient and Wildtype Zebrafish Muscle Tissue | Muscle | Zebrafish | Myopathy | University of North Carolina at Chapel Hill | LC-MS |
| ST002334 | AN003811 | Phospholipase D3 impact on the endolysosomal lipidome | Cultured cells | Human | Alzheimers disease | VIB-KU Leuven | LC-MS |
| ST002324 | AN003793 | Exploration of age-dependent changes of phospholipid profiles in C. elegans depleted of tif-IA and ncl-1 | Worms | C. elegans | University of Innsbruck | LC-MS | |
| ST002304 | AN003765 | White-nose syndrome disrupts the splenic lipidome of little brown bats (Myotis lucifugus) at early disease stages | Spleen | Little brown bat | White-nose syndrome | Georgetown University | LC-MS |
| ST002303 | AN003764 | Fitm2 is required for ER homeostasis and normal function of murine liver | Liver | Mouse | Harvard School of Public Health | LC-MS | |
| ST002283 | AN003731 | The “ForensOMICS” approach to forensic post-mortem interval estimation: combining metabolomics, lipidomics and proteomics for the analysis human skeletal remains | Bone | Human | University of Central Lancashire | LC-MS | |
| ST002195 | AN003593 | Untargeted lipidomics studies in the course of dermatitis onset and progression | Skin | Mouse | Dermatitis | Keio University | LC-MS |
| ST002101 | AN003435 | Functional metabolomics-based molecular profiling of acute and chronic hepatitis (Liver Lipidomics) | Liver | Mouse | NASH | Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University | LC-MS |
| ST002093 | AN003419 | Lipidomics of High Fat vs Control Mice | Lung | Mouse | Obesity | University of North Carolina at Chapel Hill | LC-MS |
| ST001989 | AN003241 | THEM6-mediated lipid remodelling sustains stress resistance in cancer (Part 3) | LNCaP cells | Human | Cancer | IGMM | LC-MS |
| ST001983 | AN003234 | Metabolomic Fingerprinting of Human High Grade Serous Ovarian Carcinoma Cell Lines | Ovarian cancer cells | Human | Cancer | University of Oklahoma Health Sciences Center | LC-MS |
| ST001958 | AN003193 | Data on changes in lipid profiles during differentiation and maturation of human subcutaneous white adipocytes analyzed using chromatographic and bioinformatics tools | Adipose tissue | Human | Hamamatsu University School of Medicine | LC-MS | |
| ST001942 | AN003186 | Lipidomics of esophageal adenocarcinoma | Esophagus | Human | Cancer | QIMR Berghofer Medical Research Institute | LC-MS |
| ST001888 | AN003060 | A Metabolome Atlas of the Aging Mouse Brain (Study part II) | Brain | Mouse | University of California, Davis | GC-MS/LC-MS | |
| ST001815 | AN002947 | Metabolic Markers of Methotrexate Response in Juvenile Idiopathic Arthritis | Blood | Human | Arthritis | University of Kansas | GC-MS/LC-MS |
| ST001738 | AN002830 | AdipoAtlas: A Reference Lipidome for Human White Adipose Tissue | Adipose tissue | Human | Obesity | University of Leipzig | LC-MS |
| ST001725 | AN002810 | Lipidomics dataset of Danio rerio optic nerve regeneration model | Eye tissue | Zebrafish | Eye disease | University of Miami | LC-MS |
| ST001708 | AN002782 | Oxylipin biosynthesis reinforces cellular senescence through a RAS/p53 feedback loop and allows detection of senolysis | Blood | Mouse | Buck Institute for Research on Aging | LC-MS | |
| ST001687 | AN002755 | Non-transformed cells respond to fat by inducing glucose metabolism | Liver | Mouse | VIB-KU Leuven Center for Cancer Biology | LC-MS | |
| ST001637 | AN002678 | A Metabolome Atlas of the Aging Mouse Brain | Brain | Mouse | University of California, Davis | GC-MS/LC-MS | |
| ST001405 | AN002347 | MDM2-Dependent Rewiring of Metabolomic and Lipidomic Profiles in Dedifferentiated Liposarcoma Models | Cultured cells | Human | Ohio State University | LC-MS | |
| ST001404 | AN002346 | Ontogeny related changes in the pediatric liver metabolome (part-III) | Liver | Human | Moffitt Cancer Center | LC-MS | |
| ST001403 | AN002345 | Ontogeny related changes in the pediatric liver metabolome (part-II) | Liver | Human | Moffitt Cancer Center | LC-MS | |
| ST001381 | AN002301 | Lipid profile Dataset of optogenetics induced optic nerve regeneration | Optic nerve | Mouse | Eye disease | University of Miami | LC-MS |
| ST001381 | AN002302 | Lipid profile Dataset of optogenetics induced optic nerve regeneration | Optic nerve | Mouse | Eye disease | University of Miami | LC-MS |
| ST001363 | AN002269 | Monophasic lipidomics extraction in cancer cell lines | Hep G2 cells | Human | Cancer | Institute of Genetics and Molecular Medicine | LC-MS |
| ST001336 | AN002228 | Effect of high-fat diet and bile acid treatment on serum and tissue lipidomes in mice | Blood | Mouse | QIMR Berghofer Medical Research Institute | LC-MS | |
| ST001323 | AN002201 | Effect of high-fat diet on serum lipidome in mice | Blood | Mouse | QIMR Berghofer Medical Research Institute | LC-MS | |
| ST001267 | AN002104 | Mass spectrometry-based lipidomics of oral squamous cell carcinoma tissue reveals aberrant cholesterol and glycerophospholipid metabolism | Tongue | Human | Cancer | University of Helsinki | MS(Dir. Inf.) |
| ST001211 | AN002019 | Metabolomic Markers of Methotrexate Response, In Vitro | Cultured cells | Human | University of Kansas | GC-MS/LC-MS | |
| ST001106 | AN001800 | Lipidomics of Newborn Heart Tissue Exposed to Excess Maternal Cortisol in Late Gestation (part-1) | Heart | Sheep | University of Florida | LC-MS | |
| ST001105 | AN001798 | Retinal ganglion cells lipid profiling | Eye tissue | Mouse | Eye disease | University of Miami | LC-MS |
| ST001073 | AN001755 | Lipid profiling of Wnt3a-induced optic nerve regeneration | Eye tissue | Mouse | Eye disease | University of Miami | LC-MS |
| ST001061 | AN001732 | Lipidomics of Near-Term Fetal and Newborn Sheep Cardiac Tissue | Heart | Sheep | University of Florida | LC-MS | |
| ST000963 | AN001577 | Lipidomics of inflammation-induced optic nerve regeneration | Eye tissue | Rat | Eye disease | University of Miami | LC-MS |