List of Studies ( Metabolite:TG 14:1_16:0_16:1)
| Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Analysis Type |
|---|---|---|---|---|---|---|---|
| ST004236 | AN007053 | Lipidomics analysis of TERT-hWA adipocytes spheroids under basal and stimulated lipolysis conditions | Adipocytes | Human | University of Szeged | LC-MS | |
| ST004002 | AN006600 | A deep, quantitative lipid atlas of extracellular vesicles across multiple cell lines | Extracellular vescicles | Human | Cancer | European Molecular Biology Laboratory | LC-MS |
| ST004002 | AN006600 | A deep, quantitative lipid atlas of extracellular vesicles across multiple cell lines | Extracellular vescicles | Mouse | Cancer | European Molecular Biology Laboratory | LC-MS |
| ST003751 | AN006160 | Comprehensive Lipidomic Analysis Identifies Critical Lipid and Metabolic Pathway Shifts in Alport Syndrome | Blood | Human | Kidney disease | Universidad CEU San Pablo | LC-MS |
| ST003751 | AN006160 | Comprehensive Lipidomic Analysis Identifies Critical Lipid and Metabolic Pathway Shifts in Alport Syndrome | Urine | Human | Kidney disease | Universidad CEU San Pablo | LC-MS |
| ST003730 | AN006120 | Virus infection of honey bee queens alters lipid profiles and indirectly suppresses a retinue pheromone component via reducing ovary mass | Head | Honey bee | Viral infection | University of British Columbia | LC-MS |
| ST003694 | AN006061 | FOLFIRINOX effects on lipidomics in pancreatic cancer cells | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003637 | AN005973 | lomitapide effects on lipidomics | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003629 | AN005962 | Impact of human PSMC5 gene mutations on neuronal development: Lipid profiling of PSMC5 mutant T cells | T-cells | Human | Brain disease | Leibniz Institute for Plasma Science and Technology | LC-MS |
| ST003528 | AN005795 | Lipidomics profiling of livers from Alb-Cre +/- SART-/- (KO) versus age matched wild type WT mouse littermates to characterize progression to hepatic steatosis and hepatocellular carcinoma | Liver | Mouse | Cancer | University of Utah | LC-MS |
| ST003452 | AN005668 | Integrated Proteomic and Lipidomic Analysis | Adipose tissue | Human | Obesity | Hamamatsu University School of Medicine | LC-MS |
| ST003364 | AN005511 | Deep lipidomic profiling reveals sex dimorphism of lipid metabolism in fibro-calcific aortic valve disease | Aortic valve tissue | Human | Heart disease | Technical University Dresden | LC-MS |
| ST003250 | AN005323 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Tectum | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003250 | AN005323 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Tectum | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003226 | AN005289 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003226 | AN005289 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003225 | AN005287 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Chiasm | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003225 | AN005287 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Chiasm | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003222 | AN005283 | A small molecule macrophage migration inhibitory factor agonist ameliorates age-related myocardial intolerance to ischemia-reperfusion insults via metabolic regulation - Part 1 | Heart | Mouse | Ischemia | University of Mississippi Medical Center | LC-MS |
| ST002967 | AN004875 | Lipidomics study of FASN inhibition in HT-29 and HCT 116 spheroids | Cultured cells | Human | Cancer | Ohio State University | LC-MS |
| ST002880 | AN004719 | Hypoxia-driven dynamics of tomato root lipidome | Roots | Tomato | Leibniz Institute for Plasma Science and Technology | LC-MS | |
| ST002787 | AN004534 | Metabolomic analysis of gut metabolites in colorectal cancer patients: correlation with disease development and outcome | Feces | Human | Cancer | Wuhan University of Science and Technology | LC-MS |
| ST002522 | AN004155 | Lipidomics study on the effect of LBP protein on hepatic lipid composition in mice | Liver | Mouse | Oxidative stress | University of Science and Technology of China | LC-MS |
| ST002505 | AN004126 | A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) | Cultured cells | Human | Cancer | University of Science and Technology of China | LC-MS |
| ST002414 | AN003935 | Mass spectrometry dataset of LC-MS Lipidomics Analysis of Xenopus Laevis Optic Nerve | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST002283 | AN003730 | The “ForensOMICS” approach to forensic post-mortem interval estimation: combining metabolomics, lipidomics and proteomics for the analysis human skeletal remains | Bone | Human | University of Central Lancashire | LC-MS | |
| ST002047 | AN003334 | Lyso-lipid induced oligodendrocytes maturation underlie restoration of optic nerve function | Cultured cells | Rat | Eye disease | University of Miami | LC-MS |
| ST001958 | AN003193 | Data on changes in lipid profiles during differentiation and maturation of human subcutaneous white adipocytes analyzed using chromatographic and bioinformatics tools | Adipose tissue | Human | Hamamatsu University School of Medicine | LC-MS | |
| ST001405 | AN002347 | MDM2-Dependent Rewiring of Metabolomic and Lipidomic Profiles in Dedifferentiated Liposarcoma Models | Cultured cells | Human | Ohio State University | LC-MS |