List of Studies ( Metabolite:TG 16:0_16:1_18:3)
| Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Analysis Type |
|---|---|---|---|---|---|---|---|
| ST003897 | AN006400 | Postprandial Plasma Lipidomic Changes in 147 Individuals Following Ingestion of a Standard Mixed Meal | Blood | Human | Cardiovascular disease | Nanjing Medical University | Other |
| ST003897 | AN006400 | Postprandial Plasma Lipidomic Changes in 147 Individuals Following Ingestion of a Standard Mixed Meal | Blood | Human | Diabetes | Nanjing Medical University | Other |
| ST003897 | AN006400 | Postprandial Plasma Lipidomic Changes in 147 Individuals Following Ingestion of a Standard Mixed Meal | Blood | Human | Obesity | Nanjing Medical University | Other |
| ST003894 | AN006397 | Postprandial Plasma Lipidomic Changes in 24 Metabolically Healthy Individuals Following Ingestion of Four Different Isocaloric Macronutrients | Blood | Human | Cardiovascular disease | Nanjing Medical University | Other |
| ST003894 | AN006397 | Postprandial Plasma Lipidomic Changes in 24 Metabolically Healthy Individuals Following Ingestion of Four Different Isocaloric Macronutrients | Blood | Human | Diabetes | Nanjing Medical University | Other |
| ST003894 | AN006397 | Postprandial Plasma Lipidomic Changes in 24 Metabolically Healthy Individuals Following Ingestion of Four Different Isocaloric Macronutrients | Blood | Human | Obesity | Nanjing Medical University | Other |
| ST003751 | AN006158 | Comprehensive Lipidomic Analysis Identifies Critical Lipid and Metabolic Pathway Shifts in Alport Syndrome | Blood | Human | Kidney disease | Universidad CEU San Pablo | LC-MS |
| ST003751 | AN006158 | Comprehensive Lipidomic Analysis Identifies Critical Lipid and Metabolic Pathway Shifts in Alport Syndrome | Urine | Human | Kidney disease | Universidad CEU San Pablo | LC-MS |
| ST003730 | AN006120 | Virus infection of honey bee queens alters lipid profiles and indirectly suppresses a retinue pheromone component via reducing ovary mass | Head | Honey bee | Viral infection | University of British Columbia | LC-MS |
| ST003637 | AN005973 | lomitapide effects on lipidomics | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003629 | AN005962 | Impact of human PSMC5 gene mutations on neuronal development: Lipid profiling of PSMC5 mutant T cells | T-cells | Human | Brain disease | Leibniz Institute for Plasma Science and Technology | LC-MS |
| ST003364 | AN005511 | Deep lipidomic profiling reveals sex dimorphism of lipid metabolism in fibro-calcific aortic valve disease | Aortic valve tissue | Human | Heart disease | Technical University Dresden | LC-MS |
| ST003250 | AN005323 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Tectum | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003250 | AN005323 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Tectum | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003250 | AN005324 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Tectum | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003250 | AN005324 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Tectum | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003243 | AN005313 | Lipidomic analysis of serum from WT, liver-specific Gclc KO, liver-specific Nrf2 KO, and liver-specific Gclc-Nrf2 DKO mice. | Blood | Mouse | Oxidative stress | University of Rochester Medical Center | LC-MS |
| ST003243 | AN005313 | Lipidomic analysis of serum from WT, liver-specific Gclc KO, liver-specific Nrf2 KO, and liver-specific Gclc-Nrf2 DKO mice. | Blood | Mouse | Stress | University of Rochester Medical Center | LC-MS |
| ST003226 | AN005289 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003226 | AN005289 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003225 | AN005287 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Chiasm | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003225 | AN005287 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Chiasm | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003222 | AN005283 | A small molecule macrophage migration inhibitory factor agonist ameliorates age-related myocardial intolerance to ischemia-reperfusion insults via metabolic regulation - Part 1 | Heart | Mouse | Ischemia | University of Mississippi Medical Center | LC-MS |
| ST003125 | AN005123 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Fetal liver | Liver | Mouse | Maternal immune system activation | University of Copenhagen | LC-MS |
| ST002911 | AN004780 | LiLA: Lipid Lung-based ATLAS built Through a Comprehensive Workflow Designed for an Accurate Lipid Annotation | Lung | Mouse | Tuberculosis | Universidad CEU San Pablo | LC-MS |
| ST002880 | AN004719 | Hypoxia-driven dynamics of tomato root lipidome | Roots | Tomato | Leibniz Institute for Plasma Science and Technology | LC-MS | |
| ST002787 | AN004534 | Metabolomic analysis of gut metabolites in colorectal cancer patients: correlation with disease development and outcome | Feces | Human | Cancer | Wuhan University of Science and Technology | LC-MS |
| ST002522 | AN004155 | Lipidomics study on the effect of LBP protein on hepatic lipid composition in mice | Liver | Mouse | Oxidative stress | University of Science and Technology of China | LC-MS |
| ST002414 | AN003935 | Mass spectrometry dataset of LC-MS Lipidomics Analysis of Xenopus Laevis Optic Nerve | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST002398 | AN003905 | Lipidomics of Tango2 Deficient and Wildtype Zebrafish Muscle Tissue | Muscle | Zebrafish | Myopathy | University of North Carolina at Chapel Hill | LC-MS |
| ST002283 | AN003730 | The “ForensOMICS” approach to forensic post-mortem interval estimation: combining metabolomics, lipidomics and proteomics for the analysis human skeletal remains | Bone | Human | University of Central Lancashire | LC-MS | |
| ST002243 | AN003661 | Lipidomics analysis of Friedreich's ataxia (FRDA) (part II) | Blood | Human | Friedreichs Ataxia | University of Pennsylvania | LC-MS |
| ST001725 | AN002810 | Lipidomics dataset of Danio rerio optic nerve regeneration model | Eye tissue | Zebrafish | Eye disease | University of Miami | LC-MS |
| ST001477 | AN002453 | Lipidomics dataset of PTEN deletion-induced nerve regeneration mouse model | Eye tissue | Mouse | Eye disease | University of Miami | LC-MS |
| ST001405 | AN002347 | MDM2-Dependent Rewiring of Metabolomic and Lipidomic Profiles in Dedifferentiated Liposarcoma Models | Cultured cells | Human | Ohio State University | LC-MS | |
| ST001059 | AN001733 | Lipidomics for wildlife disease etiology and biomarker discovery: a case study of pansteatitis outbreak in South Africa (part-II) | Adipose tissue | Mozambique tilapia | Inflammation | South East Center for Integrated Metabolomics | LC-MS |
| ST001052 | AN001721 | Lipidomics for wildlife disease etiology and biomarker discovery: a case study of pansteatitis outbreak in South Africa (part-I) | Blood | Mozambique tilapia | Inflammation | South East Center for Integrated Metabolomics | LC-MS |