List of Studies ( Metabolite:TG 16:0_16:1_22:6)
| Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Analysis Type |
|---|---|---|---|---|---|---|---|
| ST004238 | AN007055 | Lipidomic Characterization of Wild-Type vs ATGL/HSL Double Knockout Adipocytes in Basal and Stimulated Lipolysis | Adipocytes | Mouse | University of Szeged | LC-MS | |
| ST004237 | AN007054 | Lipidomic analysis of the perigonadal adipose tissue of Control, HSL KO and ATGL KO mice. | Adipocytes | Mouse | University of Szeged | LC-MS | |
| ST004236 | AN007053 | Lipidomics analysis of TERT-hWA adipocytes spheroids under basal and stimulated lipolysis conditions | Adipocytes | Human | University of Szeged | LC-MS | |
| ST004167 | AN006917 | Targeted Lipidomic Profiling of STBD1 Knockdown in Clear Cell Renal Carcinoma Cells | Renal cancer cells | Human | Cancer | The Affiliated Cancer Hospital of Zhengzhou University | LC-MS |
| ST003988 | AN006569 | Lipid and cell cycling perturbations driven by the HDAC inhibitor romidepsin render liver cancer vulnerable to RTK targeting and immunologically active | Cultured cells | Human | Cancer | CNRS | LC-MS |
| ST003897 | AN006400 | Postprandial Plasma Lipidomic Changes in 147 Individuals Following Ingestion of a Standard Mixed Meal | Blood | Human | Cardiovascular disease | Nanjing Medical University | Other |
| ST003897 | AN006400 | Postprandial Plasma Lipidomic Changes in 147 Individuals Following Ingestion of a Standard Mixed Meal | Blood | Human | Diabetes | Nanjing Medical University | Other |
| ST003897 | AN006400 | Postprandial Plasma Lipidomic Changes in 147 Individuals Following Ingestion of a Standard Mixed Meal | Blood | Human | Obesity | Nanjing Medical University | Other |
| ST003894 | AN006397 | Postprandial Plasma Lipidomic Changes in 24 Metabolically Healthy Individuals Following Ingestion of Four Different Isocaloric Macronutrients | Blood | Human | Cardiovascular disease | Nanjing Medical University | Other |
| ST003894 | AN006397 | Postprandial Plasma Lipidomic Changes in 24 Metabolically Healthy Individuals Following Ingestion of Four Different Isocaloric Macronutrients | Blood | Human | Diabetes | Nanjing Medical University | Other |
| ST003894 | AN006397 | Postprandial Plasma Lipidomic Changes in 24 Metabolically Healthy Individuals Following Ingestion of Four Different Isocaloric Macronutrients | Blood | Human | Obesity | Nanjing Medical University | Other |
| ST003758 | AN006170 | Untargeted lipidomics of gemcitabine-resistant cells | Pancreas | Human | Cancer | Victor Chang Cardiac Research Institute | LC-MS |
| ST003751 | AN006158 | Comprehensive Lipidomic Analysis Identifies Critical Lipid and Metabolic Pathway Shifts in Alport Syndrome | Blood | Human | Kidney disease | Universidad CEU San Pablo | LC-MS |
| ST003751 | AN006158 | Comprehensive Lipidomic Analysis Identifies Critical Lipid and Metabolic Pathway Shifts in Alport Syndrome | Urine | Human | Kidney disease | Universidad CEU San Pablo | LC-MS |
| ST003694 | AN006061 | FOLFIRINOX effects on lipidomics in pancreatic cancer cells | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003637 | AN005973 | lomitapide effects on lipidomics | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003629 | AN005962 | Impact of human PSMC5 gene mutations on neuronal development: Lipid profiling of PSMC5 mutant T cells | T-cells | Human | Brain disease | Leibniz Institute for Plasma Science and Technology | LC-MS |
| ST003452 | AN005668 | Integrated Proteomic and Lipidomic Analysis | Adipose tissue | Human | Obesity | Hamamatsu University School of Medicine | LC-MS |
| ST003364 | AN005511 | Deep lipidomic profiling reveals sex dimorphism of lipid metabolism in fibro-calcific aortic valve disease | Aortic valve tissue | Human | Heart disease | Technical University Dresden | LC-MS |
| ST003341 | AN005475 | Untargeted Lipidomic Profiling of Canine Cancer Cell Lines | Cultured cells | Dog | Cancer | Kojin Therapeutics, Inc. | LC-MS |
| ST003250 | AN005323 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Tectum | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003250 | AN005323 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Tectum | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003248 | AN005320 | Effects of acute mitoregulin loss on cardiac mitochondrial lipids in mice | Mitochondria | Mouse | Cardiovascular disease | University of Iowa | LC-MS |
| ST003246 | AN005316 | Effects of mitoregulin loss on cardiac and mitochondrial lipids in aged male mice | Heart | Mouse | Cardiovascular disease | University of Iowa | LC-MS |
| ST003226 | AN005289 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003226 | AN005289 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003225 | AN005287 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Chiasm | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003225 | AN005287 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Chiasm | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003222 | AN005283 | A small molecule macrophage migration inhibitory factor agonist ameliorates age-related myocardial intolerance to ischemia-reperfusion insults via metabolic regulation - Part 1 | Heart | Mouse | Ischemia | University of Mississippi Medical Center | LC-MS |
| ST003125 | AN005123 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Fetal liver | Liver | Mouse | Maternal immune system activation | University of Copenhagen | LC-MS |
| ST002967 | AN004875 | Lipidomics study of FASN inhibition in HT-29 and HCT 116 spheroids | Cultured cells | Human | Cancer | Ohio State University | LC-MS |
| ST002911 | AN004780 | LiLA: Lipid Lung-based ATLAS built Through a Comprehensive Workflow Designed for an Accurate Lipid Annotation | Lung | Mouse | Tuberculosis | Universidad CEU San Pablo | LC-MS |
| ST002764 | AN004499 | Identification of pre-diagnostic lipid sets associated with liver cancer risk using untargeted lipidomics and chemical set analysis – a nested case-control study within the ATBC cohort | Blood | Human | Cancer | Icahn School of Medicine at Mount Sinai | LC-MS |
| ST002747 | AN004456 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Human | CZ Biohub | LC-MS | |
| ST002747 | AN004456 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Rickettsia parkeri | CZ Biohub | LC-MS | |
| ST002713 | AN004398 | Ranolazine induced metabolic rewiring improves melanoma responses to targeted therapy and immunotherapy - lipidomics | Cultured cells | Human | Cancer | University of Colorado Denver | LC-MS |
| ST002505 | AN004126 | A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) | Cultured cells | Human | Cancer | University of Science and Technology of China | LC-MS |
| ST002438 | AN003972 | Ozone alters glycosphingolipid metabolism and exacerbates characteristics of asthma in mice | Lung | Mouse | Asthma | University of California, Davis | LC-MS |
| ST002414 | AN003935 | Mass spectrometry dataset of LC-MS Lipidomics Analysis of Xenopus Laevis Optic Nerve | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST002283 | AN003730 | The “ForensOMICS” approach to forensic post-mortem interval estimation: combining metabolomics, lipidomics and proteomics for the analysis human skeletal remains | Bone | Human | University of Central Lancashire | LC-MS | |
| ST001725 | AN002810 | Lipidomics dataset of Danio rerio optic nerve regeneration model | Eye tissue | Zebrafish | Eye disease | University of Miami | LC-MS |
| ST001111 | AN001805 | Breast Cancer Lipidomics Tissue | Adipose tissue | Human | Cancer | Baylor College of Medicine | LC-MS |
| ST001059 | AN001733 | Lipidomics for wildlife disease etiology and biomarker discovery: a case study of pansteatitis outbreak in South Africa (part-II) | Adipose tissue | Mozambique tilapia | Inflammation | South East Center for Integrated Metabolomics | LC-MS |
| ST001052 | AN001721 | Lipidomics for wildlife disease etiology and biomarker discovery: a case study of pansteatitis outbreak in South Africa (part-I) | Blood | Mozambique tilapia | Inflammation | South East Center for Integrated Metabolomics | LC-MS |