List of Studies ( Metabolite:TG 18:0_18:1_20:1)
| Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Analysis Type |
|---|---|---|---|---|---|---|---|
| ST004300 | AN007152 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Brain | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004300 | AN007152 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Liver | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004300 | AN007154 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Brain | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004300 | AN007154 | Two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) platform to conduct an in-depth lipidomic analysis of liver and brain tissues from fat-1 transgenic mice exposed to ethanol. | Liver | Mouse | Liver disease | University of Louisville | LC-MS |
| ST004237 | AN007054 | Lipidomic analysis of the perigonadal adipose tissue of Control, HSL KO and ATGL KO mice. | Adipocytes | Mouse | University of Szeged | LC-MS | |
| ST004167 | AN006917 | Targeted Lipidomic Profiling of STBD1 Knockdown in Clear Cell Renal Carcinoma Cells | Renal cancer cells | Human | Cancer | The Affiliated Cancer Hospital of Zhengzhou University | LC-MS |
| ST003988 | AN006569 | Lipid and cell cycling perturbations driven by the HDAC inhibitor romidepsin render liver cancer vulnerable to RTK targeting and immunologically active | Cultured cells | Human | Cancer | CNRS | LC-MS |
| ST003900 | AN006403 | Lipidome profiling of fly head tissues from wild-type and tty mutant flies (cohort 2) | Head | Insect | Rutgers University | LC-MS | |
| ST003798 | AN006243 | Metabolic signature in combination with fecal immunochemical test as a non-invasive tool for advanced colorectal neoplasia diagnosis | Feces | Human | Cancer | CICbiogUNE | LC-MS |
| ST003760 | AN006174 | Untargeted lipidomics of combination gemcitabine/paclitaxel attenuated (CombAT) PDAC cells | Pancreas | Human | Cancer | Victor Chang Cardiac Research Institute | LC-MS |
| ST003758 | AN006170 | Untargeted lipidomics of gemcitabine-resistant cells | Pancreas | Human | Cancer | Victor Chang Cardiac Research Institute | LC-MS |
| ST003717 | AN006098 | Lipidomics analysis of mouse pancreatic cancer cells cultured RPMI, TIFM, or TIFM + arginine under lipid deprivation | Cultured cells | Mouse | Cancer | University of Chicago | LC-MS |
| ST003715 | AN006096 | Lipidomics analysis of mouse PDAC cell lines treated with tung oil | Cultured cells | Mouse | Cancer | University of Chicago | LC-MS |
| ST003714 | AN006095 | Lipidomics analysis of mouse PDAC cell lines treated with alpha-eleostearic acid | Cultured cells | Mouse | Cancer | University of Chicago | LC-MS |
| ST003703 | AN006075 | NAD Depletion in Skeletal Muscle does not Compromise Muscle Function or Accelerate Aging | Muscle | Mouse | Sarcopenia | University of Copenhagen | LC-MS |
| ST003664 | AN006020 | Tumour interstitial fluid-enriched phosphoethanolamine suppresses T cell function. | T-cells | Mouse | Cancer | University of Chicago | LC-MS |
| ST003637 | AN005973 | lomitapide effects on lipidomics | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003629 | AN005962 | Impact of human PSMC5 gene mutations on neuronal development: Lipid profiling of PSMC5 mutant T cells | T-cells | Human | Brain disease | Leibniz Institute for Plasma Science and Technology | LC-MS |
| ST003452 | AN005668 | Integrated Proteomic and Lipidomic Analysis | Adipose tissue | Human | Obesity | Hamamatsu University School of Medicine | LC-MS |
| ST003364 | AN005511 | Deep lipidomic profiling reveals sex dimorphism of lipid metabolism in fibro-calcific aortic valve disease | Aortic valve tissue | Human | Heart disease | Technical University Dresden | LC-MS |
| ST003328 | AN005453 | Increased Cholesterol Synthesis Drives Neurotoxicity in Patient Stem Cell-Derived Model of Multiple Sclerosis - cellular lipidomics | Stem cells | Human | Multiple sclerosis | University of Colorado Denver | LC-MS |
| ST003293 | AN005392 | High Fat Feeding Alters Circulating Triglyceride Profile by Decreasing SCD Activity and Depleting omega-3 Fatty Acids | Blood | Rat | Hyperlipidemia | University of Southern California | LC-MS |
| ST003290 | AN005388 | High expression of oleoyl-ACP-hydrolase underpins life-threatening respiratory viral diseases | Lung | Mouse | Viral infection | Peter Doherty Institute for Infection and Immunity | LC-MS |
| ST003248 | AN005320 | Effects of acute mitoregulin loss on cardiac mitochondrial lipids in mice | Mitochondria | Mouse | Cardiovascular disease | University of Iowa | LC-MS |
| ST003222 | AN005283 | A small molecule macrophage migration inhibitory factor agonist ameliorates age-related myocardial intolerance to ischemia-reperfusion insults via metabolic regulation - Part 1 | Heart | Mouse | Ischemia | University of Mississippi Medical Center | LC-MS |
| ST003220 | AN005280 | Obesity, sex, and depot drive distinct lipid profiles in murine white adipose tissue | Adipose tissue | Mouse | Obesity | University of Utah | LC-MS |
| ST003130 | AN005133 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Maternal blood | Blood | Mouse | University of Copenhagen | LC-MS | |
| ST003129 | AN005131 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Maternal liver | Liver | Mouse | University of Copenhagen | LC-MS | |
| ST003125 | AN005123 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Fetal liver | Liver | Mouse | Maternal immune system activation | University of Copenhagen | LC-MS |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Adipose tissue | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Blood | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Heart | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Intestine | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Kidney | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Liver | Mouse | North Carolina State University | LC-MS | |
| ST003077 | AN005035 | Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism (Adipose tissue measurements) | Muscle | Mouse | North Carolina State University | LC-MS | |
| ST002967 | AN004875 | Lipidomics study of FASN inhibition in HT-29 and HCT 116 spheroids | Cultured cells | Human | Cancer | Ohio State University | LC-MS |
| ST002787 | AN004534 | Metabolomic analysis of gut metabolites in colorectal cancer patients: correlation with disease development and outcome | Feces | Human | Cancer | Wuhan University of Science and Technology | LC-MS |
| ST002522 | AN004155 | Lipidomics study on the effect of LBP protein on hepatic lipid composition in mice | Liver | Mouse | Oxidative stress | University of Science and Technology of China | LC-MS |
| ST002452 | AN004007 | Lipidomic analysis of human brain from frontotemporal dementia cases of with GRN and C9orf72 mutations | Brain | Human | Dementia | University of Sydney | LC-MS |
| ST002414 | AN003935 | Mass spectrometry dataset of LC-MS Lipidomics Analysis of Xenopus Laevis Optic Nerve | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST001888 | AN003059 | A Metabolome Atlas of the Aging Mouse Brain (Study part II) | Brain | Mouse | University of California, Davis | GC-MS/LC-MS | |
| ST001637 | AN002677 | A Metabolome Atlas of the Aging Mouse Brain | Brain | Mouse | University of California, Davis | GC-MS/LC-MS | |
| ST001405 | AN002347 | MDM2-Dependent Rewiring of Metabolomic and Lipidomic Profiles in Dedifferentiated Liposarcoma Models | Cultured cells | Human | Ohio State University | LC-MS | |
| ST001106 | AN001799 | Lipidomics of Newborn Heart Tissue Exposed to Excess Maternal Cortisol in Late Gestation (part-1) | Heart | Sheep | University of Florida | LC-MS | |
| ST001061 | AN001731 | Lipidomics of Near-Term Fetal and Newborn Sheep Cardiac Tissue | Heart | Sheep | University of Florida | LC-MS | |
| ST001052 | AN001721 | Lipidomics for wildlife disease etiology and biomarker discovery: a case study of pansteatitis outbreak in South Africa (part-I) | Blood | Mozambique tilapia | Inflammation | South East Center for Integrated Metabolomics | LC-MS |