Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:Thr-Pro)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteAnalysis Type
ST004389 AN007333 Longitudinal Multi-omics Profiling Reveals Different Adaptation to Heat Stress in Genomically Divergent Lactating Sows Feces Pig Environmental stress North Carolina State University LC-MS
ST004389 AN007333 Longitudinal Multi-omics Profiling Reveals Different Adaptation to Heat Stress in Genomically Divergent Lactating Sows Milk Pig Environmental stress North Carolina State University LC-MS
ST004194 AN006966 PfK13-associated artemisinin resistance slows drug activation and enhances antioxidant defence, which can be overcome with sulforaphane Cultured cells Plasmodium falciparum Malaria Monash University LC-MS
ST004153 AN006895 Multi-omics Study of Small Intestine Adaptation After Total Colectomy in a Rat model Feces Rat Shanghai Jiao Tong University LC-MS
ST003587 AN005891 Comparison of Machine Learning Models for Metabolomic-Based Clinical Prediction of Preterm Birth Blood Human University of Calgary LC-MS
ST003333 AN005460 Urine Metabolite Profiling in Indian Male Population at High Altitude using Liquid Chromatography – Mass Spectrometry: A Longitudinal Pilot Study Urine Human Environmental exposure Defence Institute of Physiology and Allied Sciences LC-MS
ST003333 AN005460 Urine Metabolite Profiling in Indian Male Population at High Altitude using Liquid Chromatography – Mass Spectrometry: A Longitudinal Pilot Study Urine Human Hypoxia Defence Institute of Physiology and Allied Sciences LC-MS
ST003333 AN005461 Urine Metabolite Profiling in Indian Male Population at High Altitude using Liquid Chromatography – Mass Spectrometry: A Longitudinal Pilot Study Urine Human Environmental exposure Defence Institute of Physiology and Allied Sciences LC-MS
ST003333 AN005461 Urine Metabolite Profiling in Indian Male Population at High Altitude using Liquid Chromatography – Mass Spectrometry: A Longitudinal Pilot Study Urine Human Hypoxia Defence Institute of Physiology and Allied Sciences LC-MS
ST003160 AN005184 New class of heterospirocyclic compounds present strong and rapid activity against artemisinin- and multidrug-resistant P. falciparum parasites Plasmodium cells Plasmodium falciparum Malaria Monash University LC-MS
ST003144 AN005159 On-target, dual aminopeptidase inhibition provides cross-species antimalarial activity Blood Plasmodium falciparum Malaria Monash University LC-MS
ST003024 AN004959 Identifying and mathematically modeling the time-course of extracellular metabolic markers associated with resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa - Part 1 Bacterial cells Pseudomonas aeruginosa Monash Institute of Pharmaceutical Sciences LC-MS
ST002998 AN004925 The role of gut microbiota in muscle mitochondria function, colon health, and sarcopenia: from clinical to bench Bacterial cells Faecalibacterium prausnitzii Sarcopenia Chinese University of Hong Kong GC-MS/LC-MS
ST002998 AN004925 The role of gut microbiota in muscle mitochondria function, colon health, and sarcopenia: from clinical to bench Bacterial cells Lacticaseibacillus rhamnosus Sarcopenia Chinese University of Hong Kong GC-MS/LC-MS
ST002977 AN004887 Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant Feces Human University of Michigan LC-MS
ST002977 AN004888 Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant Feces Human University of Michigan LC-MS
ST002977 AN004889 Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant Feces Human University of Michigan LC-MS
ST002977 AN004890 Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant Feces Human University of Michigan LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University LC-MS
ST002823 AN004604 Smoking Induced Gut Microbial Dysbiosis Mediates Cancer Progression Through Adaptive Immune System Modulation Feces Mouse Cancer University of Alabama, Birmingham LC-MS
ST002792 AN004542 Chemoproteomics validates selective targeting of Plasmodium M1 alanyl aminopeptidase as a cross-species strategy to treat malaria Blood Plasmodium falciparum Malaria Monash University LC-MS
ST002787 AN004535 Metabolomic analysis of gut metabolites in colorectal cancer patients: correlation with disease development and outcome Feces Human Cancer Wuhan University of Science and Technology LC-MS
ST002761 AN004487 Metabolic responses of normal rat kidneys to a high salt intake (Urine) Urine Rat Medical College of Wisconsin LC-MS
ST002761 AN004489 Metabolic responses of normal rat kidneys to a high salt intake (Urine) Urine Rat Medical College of Wisconsin LC-MS
ST002760 AN004483 Metabolic responses of normal rat kidneys to a high salt intake (Kidney outer medulla) Kidney Rat Medical College of Wisconsin LC-MS
ST002760 AN004485 Metabolic responses of normal rat kidneys to a high salt intake (Kidney outer medulla) Kidney Rat Medical College of Wisconsin LC-MS
ST002760 AN004486 Metabolic responses of normal rat kidneys to a high salt intake (Kidney outer medulla) Kidney Rat Medical College of Wisconsin LC-MS
ST002759 AN004481 Metabolic responses of normal rat kidneys to a high salt intake (Kidney cortex) Kidney Rat Medical College of Wisconsin LC-MS
ST002759 AN004482 Metabolic responses of normal rat kidneys to a high salt intake (Kidney cortex) Kidney Rat Medical College of Wisconsin LC-MS
ST002747 AN004454 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Human CZ Biohub LC-MS
ST002747 AN004454 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Rickettsia parkeri CZ Biohub LC-MS
ST002747 AN004455 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Human CZ Biohub LC-MS
ST002747 AN004455 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Rickettsia parkeri CZ Biohub LC-MS
ST002472 AN004037 Linking bacterial metabolites to disease-associated microbes to uncover mechanisms of host-microbial interactions in intestinal inflammation. Veillonella parvula cell and media profiling Bacterial cells Veillonella parvula Ulcerative colitis Broad Institute of MIT and Harvard LC-MS
ST002471 AN004033 Linking bacterial metabolites to disease-associated microbes to uncover mechanisms of host-microbial interactions in intestinal inflammation. Human stool profiling Feces Human Ulcerative colitis Broad Institute of MIT and Harvard LC-MS
ST002247 AN003670 Microbiota and Health Study (Dhaka, Bangladesh) Feces Human Broad Institute of MIT and Harvard LC-MS
ST002075 AN003382 Profiling of the human intestinal microbiome and bile acids under physiologic conditions using an ingestible sampling device (Part 2) Intestine Human University of California, Davis LC-MS
ST001955 AN003181 Metabonomics analysis reveals the physiological mechanism of promoting maize shoots growth under negative pressure to stabilize soil water content Leaf Maize Heilongjiang Bayi Agricultural University APCI-MS
ST001794 AN002912 Metabolomics Analysis of Time-Series Gastrointestinal Lumen Samples Jejunum Human University of California, Davis LC-MS
ST001205 AN002006 Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites Cultured cells Human Malaria Monash University LC-MS
ST001205 AN002006 Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University LC-MS
ST001204 AN002004 Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Human Malaria Monash University LC-MS
ST001204 AN002004 Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University LC-MS
ST001201 AN001998 Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Human Malaria Monash University LC-MS
ST001201 AN001998 Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University LC-MS
ST001175 AN001950 Multi-omics analysis demonstrates unique mode of action of a potent new antimalarial compound, JPC-3210, against Plasmodium falciparum Plasmodium cells Plasmodium falciparum Malaria Monash University LC-MS
ST001033 AN001694 Determination of mode of action of anti-malalrial drugs using untargeted metabolomics Cultured cells Plasmodium falciparum Malaria Monash University LC-MS
ST000974 AN001595 GC6-74 matabolomic of TB (Part 1: Plasma) Blood Human Tuberculosis Max Planck Institute for Infection Biology LC-MS
  logo