List of Studies ( Metabolite:Trp-Met)
| Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Analysis Type |
|---|---|---|---|---|---|---|---|
| ST003911 | AN006421 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 4 | Bacterial cells | Eggerthella lenta | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003911 | AN006421 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 4 | Bacterial cells | Fusobacterium nucleatum | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003910 | AN006418 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. | Bacterial cells | Bifidobacteria | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003910 | AN006418 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. | Bacterial cells | Clostridium | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003910 | AN006418 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. | Bacterial cells | Escherichia coli | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003910 | AN006418 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. | Bacterial cells | Streptococcus | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003799 | AN006244 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 2. | Cultured cells | Dorea longicatena | Colitis | Broad Institute of MIT and Harvard | LC-MS |
| ST003768 | AN006186 | The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass | Leaf | Grass | Hunan Agricultural University | LC-MS | |
| ST003768 | AN006186 | The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass | Roots | Grass | Hunan Agricultural University | LC-MS | |
| ST002998 | AN004925 | The role of gut microbiota in muscle mitochondria function, colon health, and sarcopenia: from clinical to bench | Bacterial cells | Faecalibacterium prausnitzii | Sarcopenia | Chinese University of Hong Kong | GC-MS/LC-MS |
| ST002998 | AN004925 | The role of gut microbiota in muscle mitochondria function, colon health, and sarcopenia: from clinical to bench | Bacterial cells | Lacticaseibacillus rhamnosus | Sarcopenia | Chinese University of Hong Kong | GC-MS/LC-MS |
| ST002787 | AN004534 | Metabolomic analysis of gut metabolites in colorectal cancer patients: correlation with disease development and outcome | Feces | Human | Cancer | Wuhan University of Science and Technology | LC-MS |
| ST002460 | AN004014 | Paleamon metabolomics | Shrimp organs | Common prawn | National Museum of Natural History | LC-MS | |
| ST002075 | AN003382 | Profiling of the human intestinal microbiome and bile acids under physiologic conditions using an ingestible sampling device (Part 2) | Intestine | Human | University of California, Davis | LC-MS | |
| ST000046 | AN000078 | Identification of altered metabolic pathways in Alzheimer's disease, mild cognitive impairment and cognitively normals using Metabolomics (plasma) | Blood | Human | Alzheimers disease | Mayo Clinic | LC-MS |