List of Studies ( Metabolite:Val-Lys)
| Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Analysis Type |
|---|---|---|---|---|---|---|---|
| ST004227 | AN007035 | Comparative untargeted metabolomics analysis the wheat grains in cultivars zhengmai 7698 and zhoumai 22 | Seeds | Wheat | Henan Academy of Agricultural Sciences | LC-MS | |
| ST004190 | AN006962 | Comparative Analysis of the Metabolic Profiles of Alix−/− and Ozz−/− Soleus Skeletal Muscle | Muscle | Mouse | St Jude Children's Research Hospital | LC-MS | |
| ST004153 | AN006894 | Multi-omics Study of Small Intestine Adaptation After Total Colectomy in a Rat model | Feces | Rat | Shanghai Jiao Tong University | LC-MS | |
| ST004144 | AN006869 | Metabolic rewiring in isogenic SW48 colorectal cancer cells with different oncogenic KRAS G12 point mutations | Cultured cells | Human | Cancer | Brunel University of London | LC-MS |
| ST003911 | AN006421 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 4 | Bacterial cells | Eggerthella lenta | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003911 | AN006421 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 4 | Bacterial cells | Fusobacterium nucleatum | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003910 | AN006418 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. | Bacterial cells | Bifidobacteria | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003910 | AN006418 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. | Bacterial cells | Clostridium | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003910 | AN006418 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. | Bacterial cells | Escherichia coli | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003910 | AN006418 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. | Bacterial cells | Streptococcus | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003712 | AN006092 | ndufs2-/- mitochondrial Leigh syndrome zebrafish model has shortened lifespan, morphologic anomalies, and altered one-carbon metabolism | Larvae | Zebrafish | Mitochondrial disease | Children's Hospital of Philadelphia | LC-MS |
| ST003565 | AN005857 | Metaboloomics analysis of the antimalarial compound WEHI-1888504 (aka compound 59) in Plasmodium falciparum (3D7) infected red blood cells | Cultured cells | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST003362 | AN005504 | Metabolomics analysis of Glioblastoma (GBM) cell line U251 labeled by 13C-glutamine after treatment with pimozide | Cultured cells | Human | Cancer | Ohio State University | LC-MS |
| ST003362 | AN005506 | Metabolomics analysis of Glioblastoma (GBM) cell line U251 labeled by 13C-glutamine after treatment with pimozide | Cultured cells | Human | Cancer | Ohio State University | LC-MS |
| ST003179 | AN005221 | Property and Activity Refinement of Dihydroquinazolinone-3-carboxamides as Orally Efficacious Antimalarials that Target PfATP4 | Plasmodium cells | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST002998 | AN004925 | The role of gut microbiota in muscle mitochondria function, colon health, and sarcopenia: from clinical to bench | Bacterial cells | Faecalibacterium prausnitzii | Sarcopenia | Chinese University of Hong Kong | GC-MS/LC-MS |
| ST002998 | AN004925 | The role of gut microbiota in muscle mitochondria function, colon health, and sarcopenia: from clinical to bench | Bacterial cells | Lacticaseibacillus rhamnosus | Sarcopenia | Chinese University of Hong Kong | GC-MS/LC-MS |
| ST002977 | AN004889 | Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant | Feces | Human | University of Michigan | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides fragilis | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides thetaiotaomicron | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides uniformis | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Blautia producta | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium clostridioforme | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hathewayi | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hylemonae | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium scindens | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium symbiosum | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecalis | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecium | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus hirae | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Escherichia fergusonii | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Flavonifractor plautii | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Parabacteroides distasonis | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides fragilis | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides thetaiotaomicron | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides uniformis | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Blautia producta | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium clostridioforme | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hathewayi | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hylemonae | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium scindens | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium symbiosum | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecalis | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecium | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus hirae | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Escherichia fergusonii | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Flavonifractor plautii | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Parabacteroides distasonis | Stanford University | LC-MS | |
| ST002787 | AN004535 | Metabolomic analysis of gut metabolites in colorectal cancer patients: correlation with disease development and outcome | Feces | Human | Cancer | Wuhan University of Science and Technology | LC-MS |
| ST002775 | AN004517 | Zebrafish Retina Regeneration Metabolomics - 3 Days Post Crush | Eye tissue | Zebrafish | Eye disease | University of Miami | LC-MS |
| ST002760 | AN004485 | Metabolic responses of normal rat kidneys to a high salt intake (Kidney outer medulla) | Kidney | Rat | Medical College of Wisconsin | LC-MS | |
| ST002747 | AN004455 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Human | CZ Biohub | LC-MS | |
| ST002747 | AN004455 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Rickettsia parkeri | CZ Biohub | LC-MS | |
| ST002512 | AN004136 | Gnotobiotic mice: Metabolites in intestinal contents of germ-free mice colonized with strains of gut bacterium Eggerthella lenta | Intestine | Mouse | University of California, San Francisco | LC-MS | |
| ST002512 | AN004137 | Gnotobiotic mice: Metabolites in intestinal contents of germ-free mice colonized with strains of gut bacterium Eggerthella lenta | Intestine | Mouse | University of California, San Francisco | LC-MS | |
| ST002510 | AN004134 | Strain supernatants: Strain diversity of Eggerthella lenta metabolites in defined media | Bacterial media | Eggerthella lenta | University of California, San Francisco | LC-MS | |
| ST002493 | AN004086 | Composition of raw plant-based food items Pilot Study | Plant | Apple | Northeastern University; Massachusets Institute of Technology | LC-MS | |
| ST002493 | AN004086 | Composition of raw plant-based food items Pilot Study | Plant | Basil | Northeastern University; Massachusets Institute of Technology | LC-MS | |
| ST002493 | AN004086 | Composition of raw plant-based food items Pilot Study | Plant | Garlic | Northeastern University; Massachusets Institute of Technology | LC-MS | |
| ST002493 | AN004086 | Composition of raw plant-based food items Pilot Study | Plant | Lettuce | Northeastern University; Massachusets Institute of Technology | LC-MS | |
| ST002493 | AN004086 | Composition of raw plant-based food items Pilot Study | Plant | Strawberry | Northeastern University; Massachusets Institute of Technology | LC-MS | |
| ST002493 | AN004086 | Composition of raw plant-based food items Pilot Study | Plant | Tomato | Northeastern University; Massachusets Institute of Technology | LC-MS | |
| ST002477 | AN004046 | Neutrophil metabolomics in COVID-19 | Neutrophils | Human | COVID-19 | UT Southwestern Medical Center | LC-MS |
| ST002471 | AN004033 | Linking bacterial metabolites to disease-associated microbes to uncover mechanisms of host-microbial interactions in intestinal inflammation. Human stool profiling | Feces | Human | Ulcerative colitis | Broad Institute of MIT and Harvard | LC-MS |
| ST002444 | AN003981 | Zebrafish Optic Nerve Regeneration Metabolomics - 3 Days Post Crush | Eye tissue | Zebrafish | Eye disease | University of Miami | LC-MS |
| ST002407 | AN003924 | Spatial, temporal, and inter-subject variation of the metabolome along the human upper intestinal tract | Intestine | Human | University of California, Davis | LC-MS | |
| ST002231 | AN003640 | Metabolomics Analysis of HOG-EV and HOG-R132H Cells with and without BAY 2402234 Treatment | Cultured cells | Human | Cancer | UT Southwestern Medical Center | LC-MS |
| ST002094 | AN003420 | Commensal intestinal microbiota regulates host luminal proteolytic activity and intestinal barrier integrity through β-glucuronidase activity (Part 1) | Feces | Human | Irritable bowel syndrome | Mayo Clinic | LC-MS |
| ST002094 | AN003421 | Commensal intestinal microbiota regulates host luminal proteolytic activity and intestinal barrier integrity through β-glucuronidase activity (Part 1) | Feces | Human | Irritable bowel syndrome | Mayo Clinic | LC-MS |
| ST001955 | AN003181 | Metabonomics analysis reveals the physiological mechanism of promoting maize shoots growth under negative pressure to stabilize soil water content | Leaf | Maize | Heilongjiang Bayi Agricultural University | APCI-MS | |
| ST001794 | AN002911 | Metabolomics Analysis of Time-Series Gastrointestinal Lumen Samples | Jejunum | Human | University of California, Davis | LC-MS | |
| ST001658 | AN002708 | Control of Topoisomerase II Activity and Chemotherapeutic Inhibition by TCA Cycle Metabolites | Yeast cells | Saccharomyces cerevisiae | Cancer | Johns Hopkins University | LC-MS |
| ST000231 | AN000346 | Comprehensive analysis of transcriptome and metabolome in Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma (part II) | Liver | Human | Cancer | Osaka City University | LC-MS |
| ST000230 | AN000344 | Comprehensive analysis of transcriptome and metabolome in Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma | Liver | Human | Cancer | Osaka City University | LC-MS |