Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:CMP-2-trimethylaminoethylphosphonate)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteUnits(range)
ST001788 AN002900 β-Adrenergic regulation of metabolism in macrophages (part-IV) Macrophages Human Monash University Intensity
ST002119 AN003467 Metabolomics analysis of zebrafish response to CID661578 treatment Larvae Zebrafish Diabetes North Carolina State University ion counts
ST002371 AN003866 High-resolution metabolomics analysis of NLRP3 inflammasome activated macrophages Macrophages Mouse Inflammation Wake Forest School of Medicine peak area
ST001441 AN002407 Metabolomics of patient-derived fibroblasts Fibroblast cells Human Mitochondrial disease North Carolina State University Peak area
ST001611 AN002645 Mouse model of sarcoma (STS) to characterize tumor vulnerabilities and identify novel targets for anti-cancer treatment Muscle Mouse Cancer North Carolina State University Peak area
ST001611 AN002645 Mouse model of sarcoma (STS) to characterize tumor vulnerabilities and identify novel targets for anti-cancer treatment Sarcoma Mouse Cancer North Carolina State University Peak area
ST002926 AN004798 Multi-“omics” analysis reveals the orphan P. falciparum protein kinase PfPK8 regulates multi-gene family expression Blood Plasmodium falciparum Malaria Monash University peak height
ST000403 AN000642 Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes Cells Human Monash Institute of Pharmaceutical Sciences, Monash University Peak height
ST000539 AN000818 Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes (part II) Cells Human Monash Institute of Pharmaceutical Sciences, Monash University Peak height
ST001033 AN001694 Determination of mode of action of anti-malalrial drugs using untargeted metabolomics Cultured cells Plasmodium falciparum Malaria Monash University Peak height
ST001274 AN002115 Metabolomics-based profiling of the mode of action of Pathogen Box compounds in Trypanosoma brucei (part-I) Cultured cells Trypanosoma brucei Sleeping sickness Monash University Peak height
ST001276 AN002117 Development and Characterisation of a Novel Class of Aroyl Guanidine Containing Anti-Trypanosomal Compounds Cultured cells Trypanosoma brucei Sleeping sickness Monash University Peak height
ST001201 AN001999 Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Human Malaria Monash University Peak intensity
ST001201 AN001999 Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University Peak intensity
ST001202 AN002000 Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites Cultured cells Human Malaria Monash University Peak intensity
ST001202 AN002000 Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University Peak intensity
ST001205 AN002006 Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites Cultured cells Human Malaria Monash University Peak intensity
ST001205 AN002006 Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University Peak intensity
ST001547 AN002576 β-Adrenergic regulation of metabolism in macrophages Macrophages Human Monash University Peak intensity
ST001549 AN002580 β-Adrenergic regulation of metabolism in macrophages (part-III) Macrophages Human Monash University Peak intensity
ST002106 AN003444 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 1) Blood Plasmodium falciparum Malaria Monash University relative intensity
ST002107 AN003446 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 2) Blood Plasmodium falciparum Malaria Monash University relative intensity
ST002108 AN003448 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 3) Blood Plasmodium falciparum Malaria Monash University relative intensity
ST002309 AN003772 Targeting malaria parasites with novel derivatives of azithromycin Blood Plasmodium falciparum Malaria Monash University relative intensity
ST001175 AN001950 Multi-omics analysis demonstrates unique mode of action of a potent new antimalarial compound, JPC-3210, against Plasmodium falciparum Plasmodium cells Plasmodium falciparum Malaria Monash University Signal Intensity
ST001304 AN002172 Multi-omics analysis delineates the distinct functions of sub-cellular acetyl-CoA pools in Toxoplasma gondii Fibroblast cells Toxoplasma gondii Parasitic infection Monash University Signal Intensity
ST001315 AN002190 Retargeting azithromycin-like compounds as antimalarials with dual modality Blood Plasmodium falciparum Malaria Monash University Signal Intensity
  logo