Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:Lys-Val)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteUnits(range)
ST002471 AN004033 Linking bacterial metabolites to disease-associated microbes to uncover mechanisms of host-microbial interactions in intestinal inflammation. Human stool profiling Feces Human Ulcerative colitis Broad Institute of MIT and Harvard Abundance
ST001062 AN001736 Arabidopsis Nit1 knockout metabolomics Plant Arabidopsis thaliana University of California, Davis Arbitrary units
ST000913 AN001483 Insights into the pathogenesis of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) through metabolomic profiling of cerebrospinal fluid (part IV) Cerebrospinal fluid Human Myalgic encephalomyelitis/chronic fatigue syndrome University of California, Davis Counts
ST002010 AN003276 Chemoresistant Ovarian Cancer Global Metabolomics Cultured cells Human Cancer The University of South Australia Intensity
ST001324 AN002202 Metabolomics Adaptation of Juvenile Pacific Abalone Haliotis discus hannai to Heat Stress Pacific Abalone Institute of Oceanology, Chinese Academy of Sciences mV*min
ST002775 AN004517 Zebrafish Retina Regeneration Metabolomics - 3 Days Post Crush Eye tissue Zebrafish Eye disease University of Miami Normalized Concentrations
ST002775 AN004518 Zebrafish Retina Regeneration Metabolomics - 3 Days Post Crush Eye tissue Zebrafish Eye disease University of Miami Normalized Concentrations
ST002444 AN003982 Zebrafish Optic Nerve Regeneration Metabolomics - 3 Days Post Crush Eye tissue Zebrafish Eye disease University of Miami normalized peak areas
ST001841 AN002984 Metabolomics of lung microdissections reveals region- and sex-specific metabolic effects of acute naphthalene exposure in mice (part II) Liver Mouse Oxidative stress University of California, Davis normalized peak height
ST002028 AN003298 Metabolomics Analysis of Blood Plasma and Stool from Six Week Flaxseed Dietary Intervention in Postmenopausal Women (Stool/HILIC) Feces Human UC Davis normalized peak height
ST002184 AN003577 Metabolic effect of the loss of mitochondrial-specific aspartyl-tRNA synthetase Das2 on mouse intestinal epithelial cells Intestine Mouse CECAD Research Center peak area
ST000230 AN000344 Comprehensive analysis of transcriptome and metabolome in Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma Liver Human Cancer Osaka City University Peak area
ST000231 AN000346 Comprehensive analysis of transcriptome and metabolome in Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma (part II) Liver Human Cancer Osaka City University Peak area
ST001658 AN002706 Control of Topoisomerase II Activity and Chemotherapeutic Inhibition by TCA Cycle Metabolites Yeast cells Yeast Cancer Johns Hopkins University Peak area
ST001658 AN002708 Control of Topoisomerase II Activity and Chemotherapeutic Inhibition by TCA Cycle Metabolites Yeast cells Yeast Cancer Johns Hopkins University Peak area
ST001658 AN002709 Control of Topoisomerase II Activity and Chemotherapeutic Inhibition by TCA Cycle Metabolites Yeast cells Yeast Cancer Johns Hopkins University Peak area
ST002505 AN004126 A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) Cultured cells Human Cancer University of Science and Technology of China Peak area
ST002104 AN003439 Chemoresistant Cancer Cell Lines are Characterized by Migratory, Amino Acid Metabolism, Protein Catabolism and IFN1 Signalling Perturbations Cultured cells Human Cancer Future Industries Institute peak height
ST002412 AN003931 Metabolic effects of the protein kinase R Macrophages Mouse Hudson peak height
ST002926 AN004798 Multi-“omics” analysis reveals the orphan P. falciparum protein kinase PfPK8 regulates multi-gene family expression Blood Plasmodium falciparum Malaria Monash University peak height
ST000403 AN000642 Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes Cells Human Monash Institute of Pharmaceutical Sciences, Monash University Peak height
ST000414 AN000655 Metabolomics-based screening of the Malaria Box reveals both novel and established mechanisms of action Cells Plasmodium falciparum Malaria Monash Institute of Pharmaceutical Sciences, Monash University Peak height
ST000539 AN000818 Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes (part II) Cells Human Monash Institute of Pharmaceutical Sciences, Monash University Peak height
ST000546 AN000832 Multi-omics based identification of specific biochemical changes associated with PfKelch13-mutant artemisinin resistant Plasmodium Cells Plasmodium falciparum Malaria Monash Institute of Pharmaceutical Sciences, Monash University Peak height
ST001033 AN001694 Determination of mode of action of anti-malalrial drugs using untargeted metabolomics Cultured cells Plasmodium falciparum Malaria Monash University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University Peak height
ST002407 AN003924 Spatial, temporal, and inter-subject variation of the metabolome along the human upper intestinal tract Intestine Human UC Davis Peak Height
ST001794 AN002911 Metabolomics Analysis of Time-Series Gastrointestinal Lumen Samples Intestine Human University of California, Davis Peak Height Intensity
ST001154 AN001944 A comprehensive plasma metabolomics dataset for a cohort of mouse knockouts within the International Mouse Phenotyping Consortium Blood Mouse University of California Peak height normalized with creatinine
ST002493 AN004086 Composition of raw plant-based food items Pilot Study Plant Plants Massachusetts Institute of Technology peak intensity
ST000551 AN000842 Investigating large scale metabolomics in mice tissue lacking insulin receptors and IGF-1 receptors Muscle Mouse Diabetes Mayo Clinic Peak intensity
ST001201 AN001998 Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Human Malaria Monash University Peak intensity
ST001201 AN001998 Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University Peak intensity
ST001202 AN002000 Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites Cultured cells Human Malaria Monash University Peak intensity
ST001202 AN002000 Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University Peak intensity
ST001204 AN002004 Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Human Malaria Monash University Peak intensity
ST001204 AN002004 Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University Peak intensity
ST001205 AN002006 Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites Cultured cells Human Malaria Monash University Peak intensity
ST001205 AN002006 Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University Peak intensity
ST001547 AN002576 β-Adrenergic regulation of metabolism in macrophages Macrophages Human Monash University Peak intensity
ST001548 AN002578 β-Adrenergic regulation of metabolism in macrophages (part-II) Macrophages Human Monash University Peak intensity
ST001549 AN002580 β-Adrenergic regulation of metabolism in macrophages (part-III) Macrophages Human Monash University Peak intensity
ST000047 AN000080 Identification of altered metabolic pathways in Alzheimer's disease, mild cognitive impairment and cognitively normals using Metabolomics (CSF) Cerebrospinal fluid Human Alzheimers disease Mayo Clinic Raw MS Intensities
ST002106 AN003445 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 1) Blood Plasmodium falciparum Malaria Monash University relative intensity
ST002107 AN003446 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 2) Blood Plasmodium falciparum Malaria Monash University relative intensity
ST002108 AN003448 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 3) Blood Plasmodium falciparum Malaria Monash University relative intensity
ST002309 AN003771 Targeting malaria parasites with novel derivatives of azithromycin Blood Plasmodium falciparum Malaria Monash University relative intensity
ST002512 AN004136 Gnotobiotic mice: Metabolites in intestinal contents of germ-free mice colonized with strains of gut bacterium Eggerthella lenta Intestine Mouse University of California, San Francisco relative ion counts
ST002512 AN004137 Gnotobiotic mice: Metabolites in intestinal contents of germ-free mice colonized with strains of gut bacterium Eggerthella lenta Intestine Mouse University of California, San Francisco relative ion counts
ST000974 AN001595 GC6-74 matabolomic of TB (Part 1: Plasma) Blood Human Tuberculosis Max Planck Institute for Infection Biology scaled units
ST000975 AN001596 GC6-74 metabolomics of TB vs healthy (Part 2: Serum) Blood Human Tuberculosis Max Planck Institute for Infection Biology scaled units
ST001175 AN001950 Multi-omics analysis demonstrates unique mode of action of a potent new antimalarial compound, JPC-3210, against Plasmodium falciparum Plasmodium cells Plasmodium falciparum Malaria Monash University Signal Intensity
ST001304 AN002172 Multi-omics analysis delineates the distinct functions of sub-cellular acetyl-CoA pools in Toxoplasma gondii Fibroblast cells Toxoplasma gondii Parasitic infection Monash University Signal Intensity
ST001315 AN002189 Retargeting azithromycin-like compounds as antimalarials with dual modality Blood Plasmodium falciparum Malaria Monash University Signal Intensity
  logo