Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:Val-Phe)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteUnits(range)
ST002758 AN004475 Metabolic responses of normal rat kidneys to a high salt intake (Plasma) Blood Rat Medical College of Wisconsin Area
ST002759 AN004479 Metabolic responses of normal rat kidneys to a high salt intake (Kidney cortex) Kidney cortex Rat Medical College of Wisconsin Area
ST002759 AN004480 Metabolic responses of normal rat kidneys to a high salt intake (Kidney cortex) Kidney cortex Rat Medical College of Wisconsin Area
ST002759 AN004482 Metabolic responses of normal rat kidneys to a high salt intake (Kidney cortex) Kidney cortex Rat Medical College of Wisconsin Area
ST002760 AN004483 Metabolic responses of normal rat kidneys to a high salt intake (Kidney outer medulla) Kidney outer medulla Rat Medical College of Wisconsin Area
ST002761 AN004487 Metabolic responses of normal rat kidneys to a high salt intake (Urine) Urine Rat Medical College of Wisconsin Area
ST002747 AN004454 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Human CZ Biohub counts, height
ST002747 AN004454 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Rickettsia parkeri CZ Biohub counts, height
ST002747 AN004455 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Human CZ Biohub counts, height
ST002747 AN004455 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Rickettsia parkeri CZ Biohub counts, height
ST000508 AN000778 Metabolic Profiling of Date Palm Fruits Plant Date palm Weill Cornell Medicine in Qatar Counts per second
ST000867 AN001396 Metabolic Profiling of Date Palm Fruits (part II) Date palm fruit Date palm Weill Cornell Medicine in Qatar Counts per second
ST001955 AN003180 Metabonomics analysis reveals the physiological mechanism of promoting maize shoots growth under negative pressure to stabilize soil water content Leaves Maize Heilongjiang Bayi Agricultural University µg/100ml
ST001955 AN003181 Metabonomics analysis reveals the physiological mechanism of promoting maize shoots growth under negative pressure to stabilize soil water content Leaves Maize Heilongjiang Bayi Agricultural University µg/100ml
ST001324 AN002202 Metabolomics Adaptation of Juvenile Pacific Abalone Haliotis discus hannai to Heat Stress Pacific Abalone Institute of Oceanology, Chinese Academy of Sciences mV*min
ST002028 AN003298 Metabolomics Analysis of Blood Plasma and Stool from Six Week Flaxseed Dietary Intervention in Postmenopausal Women (Stool/HILIC) Feces Human UC Davis normalized peak height
ST002966 AN004873 Metabolomics reveal the pathway of benzylisoquinoline alkaloids in Corydalis yanhusuo bulbs Plant Plant None Chongqing Academy of Chinese Materia Medica, Chongqing, China peak area
ST001620 AN002655 Dietary composition analysis of chow diet and purified diet using untargeted metabonomics Diet Food item China Pharmaceutical University Peak area
ST002505 AN004127 A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) Cultured cells Human Cancer University of Science and Technology of China Peak area
ST002776 AN004520 Zebrafish Optic Nerve Regeneration, Tectum Metabolomics - 3 Days Post Crush Eye tissue Zebrafish Eye disease University of Miami Peak Area
ST002075 AN003382 Profiling of the human intestinal microbiome and bile acids under physiologic conditions using an ingestible sampling device (Part 2) Intestine Human UC Davis peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University Peak height
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University Peak height
ST001794 AN002911 Metabolomics Analysis of Time-Series Gastrointestinal Lumen Samples Intestine Human University of California, Davis Peak Height Intensity
ST001154 AN001944 A comprehensive plasma metabolomics dataset for a cohort of mouse knockouts within the International Mouse Phenotyping Consortium Blood Mouse University of California Peak height normalized with creatinine
ST002493 AN004090 Composition of raw plant-based food items Pilot Study Plant Plants Massachusetts Institute of Technology peak intensity
ST002493 AN004091 Composition of raw plant-based food items Pilot Study Plant Plants Massachusetts Institute of Technology peak intensity
ST002512 AN004137 Gnotobiotic mice: Metabolites in intestinal contents of germ-free mice colonized with strains of gut bacterium Eggerthella lenta Intestine Mouse University of California, San Francisco relative ion counts
ST000974 AN001595 GC6-74 matabolomic of TB (Part 1: Plasma) Blood Human Tuberculosis Max Planck Institute for Infection Biology scaled units
ST000975 AN001596 GC6-74 metabolomics of TB vs healthy (Part 2: Serum) Blood Human Tuberculosis Max Planck Institute for Infection Biology scaled units
  logo