Return to study ST000795 main page

MB Sample ID: SA043805

Local Sample ID:ms6009-20
Subject ID:SU000820
Subject Type:Mouse
Subject Species:Mus musculus
Taxonomy ID:10090
Species Group:Mammal

Select appropriate tab below to view additional metadata details:


Subject:

Subject ID:SU000820
Subject Type:Mouse
Subject Species:Mus musculus
Taxonomy ID:10090
Species Group:Mammal

Factors:

Local Sample IDMB Sample IDFactor Level IDLevel ValueFactor Name
ms6009-20SA043805FL008979Ketogroup

Collection:

Collection ID:CO000814
Collection Summary:Uninjured or SCI mice will be randomly assigned to one of four groups, LF (low fat diet); HF (high fat diet); HFHS (high fat high sucrose diet); and Keto (ketogenic diet). All diets will be obtained from Research Diets, NJ USA43,45. Dietary fat supplementation will be initiated at 1 week after SCI. This time point for intervention was chosen to provide a meaningful timeframe for clinical translation. Also, a 1 week period will allow time for mice to recover prior to providing access to wheel running (Aim 2). The impact of dietary fat supplementation on myelin metabolism will be examined after a period of 7 weeks, including determination of (i) the lipid profile of the myelin membrane using LC/MS/MS; and (ii) metabolic markers of spinal cord metabolism by NMR. Results will be correlated with (iii) cellular and molecular markers of spinal cord pathophysiology including the appearance of OPCs, oligodendroglia and myelin, axon health, astrogliosis and inflammation; and (iv) the extent of sensorimotor recovery. (v) In addition, to gauge the impact of the dietary fat on systemic metabolic status, Insulin and Glucose Resistance Tests will be performed at 7 weeks. Food intake (g/day) and body weight gain (% initial weight) will be measured daily until the endpoint of each experiment. Mice will be housed individually in a temperature-controlled facility with a 12:12-h light-dark cycle and ad libitum access to each diet and water. A Power Analysis was performed based on histological outcomes in mice with contusion compression injury. To detect a difference between groups of 20%, which would very meaningful, a group size of 8 will be needed to achieve a power of 0.85. An additional 2 mice per group has been added to account for mortality. The Mayo Clinic Institutional Animal Care and Use Committee has approved of the proposed studies.
Sample Type:Spinal cord

Treatment:

Treatment ID:TR000834
Treatment Summary:To test the hypothesis that optimizing dietary fat will facilitate myelin repair after SCI, the diet of uninjured adult female C57BL6/J mice (12 week, 22-25g, Jackson), or those with experimental contusion-compression SCI of the lumbosacral spinal cord (L2-L3) (Fejota Clip 3g Force, applied for 30s)32,47 will be supplemented with saturated fat. The 3g Clip produces moderate SCI including demyelination and clinical impairment and we recently published a detailed methodology. At 1 week after injury, the 3g injured mice are expected to have an average Basso Mouse Scale score (BMS)=5 on a 9 point scale such that they have frequent plantar stepping with no or some coordination. This level of impairment was chosen to provide a sufficient window to observe recovery, and to be at a level compatible with examination of exercise training by wheel running (Aim 2).

Sample Preparation:

Sampleprep ID:SP000827
Sampleprep Summary:Cholesterol of mouse spinal cord Lipids will be quantified in myelin isolated in high yield and purity by subcellular fractionation from the lumbosacral spinal cord. While there are no absolutely ‘myelin-specific’ lipids, galactocerebroside is the most typical of myelin in the adult nervous system being directly proportional to the amount of myelin. Sulfatide is another galactolipid enriched in myelin. Together with cholesterol, these form 78% of the total amount of lipid in the myelin membrane and each will be quantified using LC/MS/MS. A highly sensitive assay for galactocerebroside was recently established by the Mayo Metabolomics Core and can be implemented immediately. The LC/MS/MS panel for free fatty acids, including the very long chain fatty acids found in myelin is also routinely performed by the Core. Cholesterol will be quantified using an NMR-based approach by the Mayo Dept. of Laboratory Medicine Clinical Core. Additionally, we have a plan in place with the Metabolomics Core to develop LC/MS/MS assays for sulfatide and sphingomyelin during the Pilot proposal. Having quantitative assays for each of these key myelin lipids will facilitate our goal to comprehensively profile myelin lipid metabolism and will form foundational assays for a future NIH grant focused on myelin metabolism.

Combined analysis:

Analysis ID AN001266
Analysis type MS
Chromatography type GC
Chromatography system Agilent 7890A
Column Agilent HP5-MS (30m × 0.25mm, 0.25 um)
MS Type EI
MS instrument type Single quadrupole
MS instrument name Agilent 5975C
Ion Mode POSITIVE
Units ug/mg tissue

Chromatography:

Chromatography ID:CH000882
Instrument Name:Agilent 7890A
Column Name:Agilent HP5-MS (30m × 0.25mm, 0.25 um)
Chromatography Type:GC

MS:

MS ID:MS001159
Analysis ID:AN001266
Instrument Name:Agilent 5975C
Instrument Type:Single quadrupole
MS Type:EI
Ion Mode:POSITIVE
  logo