Return to study ST002438 main page

MB Sample ID: SA243697

Local Sample ID:mx626289_OzAW_21
Subject ID:SU002527
Subject Type:Mammal
Subject Species:Mus musculus
Taxonomy ID:10090
Genotype Strain:BALB/c
Age Or Age Range:8-10 wks.
Gender:Male and female
Animal Animal Supplier:Envigo
Animal Light Cycle:12/12 light/dark

Select appropriate tab below to view additional metadata details:


Subject:

Subject ID:SU002527
Subject Type:Mammal
Subject Species:Mus musculus
Taxonomy ID:10090
Genotype Strain:BALB/c
Age Or Age Range:8-10 wks.
Gender:Male and female
Animal Animal Supplier:Envigo
Animal Light Cycle:12/12 light/dark

Factors:

Local Sample IDMB Sample IDFactor Level IDLevel ValueFactor Name
mx626289_OzAW_21SA243697FL030592SO3_MFactor

Collection:

Collection ID:CO002520
Collection Summary:Right lung lobes were microdissected following a previous protocol (Plopper et al. 1991; Stevens et al. 2021). Briefly, 3 right lobes from each mouse collected during necropsy were blunt dissected on ice by removal of the surrounding lung parenchyma from the airways. The dissected lung airways were promptly transferred and stored at -80 degrees C until preparation for metabolomics analysis.
Sample Type:Lung airways

Treatment:

Treatment ID:TR002539
Treatment Summary:Mice underwent intranasal instillation with either house-dust mite dissolved in PBS or vehicle on days 1,3, and 5. Mice were challenged with HDM or vehicle on days 12-14 and subsequently exposed to either filtered air or ozone (0.5ppm, 6hr./day) after each challenge.

Sample Preparation:

Sampleprep ID:SP002533
Sampleprep Summary:Extraction of Mammalian Tissue Samples: Liver 1. References: Fiehn O, Kind T (2006) Metabolite profiling in blood plasma. In: Metabolomics: Methods and Protocols. Weckwerth W (ed.), Humana Press, Totowa NJ (in press) 2.Starting material: Liver sample: weigh 4mg per sample into 2mL Eppendorf tubes. 3. Equipment: Centrifuge (Eppendorf 5415 D) Calibrated pipettes 1-200μl and 100-1000μl Eppendorf tubes 2mL, clear (Cat. No. 022363204) Centrifuge tubes 50mL, polypropylene Eppendorff Tabletop Centrifuge (Proteomics core Lab.) ThermoElectron Neslab RTE 740 cooling bath at –20°C MiniVortexer (VWR) Orbital Mixing Chilling/Heating Plate (Torrey Pines Scientific Instruments) Speed vacuum concentration system (Labconco Centrivap cold trap) Turex mini homogenizer 4. Chemicals Acetonitrile, LCMS grade (JT Baker; Cat. No.9829-02) Isopropanol, HPLC grade (JT Baker; Cat. No. 9095-02) Methanol Acetone Crushed ice 18 MΩ pure water (Millipore) Nitrogen line with pipette tip pH paper 5-10 (EMD Chem. Inc.) 5. Procedure Preparation of extraction mix and material before experiment: Switch on bath to pre-cool at –20°C (±2°C validity temperature range) Check pH of acetonitrile and isopropanol (pH7) using wetted pH paper Make the extraction solution by mixing acetonitrile, isopropanol and water in proportions 3 : 3 : 2 De-gas the extraction solution for 5 min with nitrogen. Make sure that the nitrogen line was flushed out of air before using it for degassing the extraction solvent solution Sample Preparation Weigh 4mg tissue sample in to a 2mL Eppendorf tube. Add 1mL extraction solvent to the tissue sample and homogenize for 45 seconds ensuring that sample resembles a powder. In between samples, clean the homogenizer in solutions of methanol, acetone, water, and the extraction solvent in the order listed. Vortex samples for 10 seconds, then 5 minutes on 4°C shaker. Centrifuge the samples for 2 minutes at 14,000 rcf. Aliquot 500µL supernatant for analysis, and 500µL for a backup. Store backup aliquots in the -20°C freezer. Evaporate one 500µl analysis aliquot in the Labconco Centrivap cold trap concentrator to complete dryness (typically overnight). The dried aliquot is then re-suspended with 500μl 50% acetonitrile (degassed as given) Centrifuge for 2 minutes at 14,000 rcf using the centrifuge Eppendorf 5415. Remove supernatant to a new Eppendorf tube. Evaporate the supernatant to dryness in the the Labconco Centrivap cold trap concentrator. Submit to derivatization. The residue should contain membrane lipids because these are supposedly not soluble enough to be found in the 50% acetonitrile solution. Therefore, this ‘membrane residue’ is now taken for membrane lipidomic fingerprinting using the nanomate LTQ ion trap mass spectrometer. Likely, a good solvent to redissolve the membrane lipids is e.g. 75% isopropanol (degassed as given above). If the ‘analysis’ aliquot is to be used for semi lipophilic compounds such as tyrosine pathway intermediates (incl. dopamine, serotonine etc, i.e. polar aromatic compounds), then these are supposedly to be found together with the ‘GCTOF’ aliquot. We can assume that this mixture is still too complex for Agilent chipLCMS. Therefore, in order to develop and validate target analysis for such aromatic compounds, we should use some sort of Solid Phase purification. We re-suspend the dried ‘GCTOF’ aliquot in 300 l water (degassed as before) to take out sugars, aliphatic amino acids, hydroxyl acids and similar logP compounds. The residue should contain our target aromatics .We could also try to adjust pH by using low concentration acetate or phosphate buffer. The residue could then be taken up in 50% acetonitrile and used for GCTOF and Agilent chipMS experiments. The other aliquot should be checked how much of our target compounds would actually be found in the ‘sugar’ fraction. 6. Problems To prevent contamination disposable material is used. Control pH from extraction mix. 7. Quality assurance For each sequence of sample extractions, perform one blank negative control extraction by applying the total procedure (i.e. all materials and plastic ware) without biological sample. 8. Disposal of waste Collect all chemicals in appropriate bottles and follow the disposal rules.

Combined analysis:

Analysis ID AN003972 AN003973 AN003974 AN003975
Analysis type MS MS MS MS
Chromatography type Reversed phase Reversed phase HILIC HILIC
Chromatography system Thermo Vanquish Thermo Vanquish Agilent 6490 Agilent 6490
Column Waters Acquity CSH C18 (100 x 2.1mm, 1.7um) Waters Acquity CSH C18 (100 x 2.1mm, 1.7um) Agilent HP5-MS (30m x 0.25mm, 0.25 um) Agilent HP5-MS (30m x 0.25mm, 0.25 um)
MS Type ESI ESI ESI ESI
MS instrument type Orbitrap Orbitrap Orbitrap Orbitrap
MS instrument name Thermo Q Exactive HF hybrid Orbitrap Thermo Q Exactive HF hybrid Orbitrap Thermo Q Exactive HF hybrid Orbitrap Thermo Q Exactive HF hybrid Orbitrap
Ion Mode POSITIVE NEGATIVE POSITIVE NEGATIVE
Units Relative abundance Relative abundance Relative abundance Relative abundance

Chromatography:

Chromatography ID:CH002937
Instrument Name:Thermo Vanquish
Column Name:Waters Acquity CSH C18 (100 x 2.1mm, 1.7um)
Chromatography Type:Reversed phase
  
Chromatography ID:CH002938
Instrument Name:Agilent 6490
Column Name:Agilent HP5-MS (30m x 0.25mm, 0.25 um)
Chromatography Type:HILIC

MS:

MS ID:MS003706
Analysis ID:AN003972
Instrument Name:Thermo Q Exactive HF hybrid Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:The ion source conditions were set as follows: spray voltage, -3.0 kV; sheath gas flow rate, 60 arbitrary units; aux gas flow rate, 25 arbitrary units; sweep gas flow rate, 2 arbitrary units; capillary temp, 300 °C; S-lens RF level, 50; Aux gas heater temp, 370 °C. The following acquisition parameters were used for MS1 analysis: resolution, 60000, AGC target, 1e6; Maximum IT, 100 ms; scan range 60-900 m/z; spectrum data type, centroid. Data dependent MS/MS parameters: resolution, 15000; AGC target, 1e5; maximum IT, 50 ms; loop count, 4; TopN, 4; isolation window, 1.0 m/z; fixed first mass, 70.0 m/z; (N)CE/ stepped nce, 20, 30, 40; spectrum data type, centroid; minimum AGC target, 8e3; intensity threshold, 1.6e5; exclude isotopes, on; dynamic exclusion, 3.0 s. To increase the total number of MS/MS spectra, five runs with iterative MS/MS exclusions were performed using the R package “IE-Omics”18 for both positive and negative electrospray conditions.
Ion Mode:POSITIVE
  
MS ID:MS003707
Analysis ID:AN003973
Instrument Name:Thermo Q Exactive HF hybrid Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:The ion source conditions were set as follows: spray voltage, -3.0 kV; sheath gas flow rate, 60 arbitrary units; aux gas flow rate, 25 arbitrary units; sweep gas flow rate, 2 arbitrary units; capillary temp, 300 °C; S-lens RF level, 50; Aux gas heater temp, 370 °C. The following acquisition parameters were used for MS1 analysis: resolution, 60000, AGC target, 1e6; Maximum IT, 100 ms; scan range 60-900 m/z; spectrum data type, centroid. Data dependent MS/MS parameters: resolution, 15000; AGC target, 1e5; maximum IT, 50 ms; loop count, 4; TopN, 4; isolation window, 1.0 m/z; fixed first mass, 70.0 m/z; (N)CE/ stepped nce, 20, 30, 40; spectrum data type, centroid; minimum AGC target, 8e3; intensity threshold, 1.6e5; exclude isotopes, on; dynamic exclusion, 3.0 s. To increase the total number of MS/MS spectra, five runs with iterative MS/MS exclusions were performed using the R package “IE-Omics”18 for both positive and negative electrospray conditions.
Ion Mode:NEGATIVE
  
MS ID:MS003708
Analysis ID:AN003974
Instrument Name:Thermo Q Exactive HF hybrid Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:The ion source conditions were set as follows: spray voltage, -3.0 kV; sheath gas flow rate, 60 arbitrary units; aux gas flow rate, 25 arbitrary units; sweep gas flow rate, 2 arbitrary units; capillary temp, 300 °C; S-lens RF level, 50; Aux gas heater temp, 370 °C. The following acquisition parameters were used for MS1 analysis: resolution, 60000, AGC target, 1e6; Maximum IT, 100 ms; scan range 60-900 m/z; spectrum data type, centroid. Data dependent MS/MS parameters: resolution, 15000; AGC target, 1e5; maximum IT, 50 ms; loop count, 4; TopN, 4; isolation window, 1.0 m/z; fixed first mass, 70.0 m/z; (N)CE/ stepped nce, 20, 30, 40; spectrum data type, centroid; minimum AGC target, 8e3; intensity threshold, 1.6e5; exclude isotopes, on; dynamic exclusion, 3.0 s. To increase the total number of MS/MS spectra, five runs with iterative MS/MS exclusions were performed using the R package “IE-Omics”18 for both positive and negative electrospray conditions.
Ion Mode:POSITIVE
  
MS ID:MS003709
Analysis ID:AN003975
Instrument Name:Thermo Q Exactive HF hybrid Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:The ion source conditions were set as follows: spray voltage, -3.0 kV; sheath gas flow rate, 60 arbitrary units; aux gas flow rate, 25 arbitrary units; sweep gas flow rate, 2 arbitrary units; capillary temp, 300 °C; S-lens RF level, 50; Aux gas heater temp, 370 °C. The following acquisition parameters were used for MS1 analysis: resolution, 60000, AGC target, 1e6; Maximum IT, 100 ms; scan range 60-900 m/z; spectrum data type, centroid. Data dependent MS/MS parameters: resolution, 15000; AGC target, 1e5; maximum IT, 50 ms; loop count, 4; TopN, 4; isolation window, 1.0 m/z; fixed first mass, 70.0 m/z; (N)CE/ stepped nce, 20, 30, 40; spectrum data type, centroid; minimum AGC target, 8e3; intensity threshold, 1.6e5; exclude isotopes, on; dynamic exclusion, 3.0 s. To increase the total number of MS/MS spectra, five runs with iterative MS/MS exclusions were performed using the R package “IE-Omics”18 for both positive and negative electrospray conditions.
Ion Mode:NEGATIVE
  logo