Return to study ST002354 main page

MB Sample ID: SA236701

Local Sample ID:TFA-T29
Subject ID:SU002443
Subject Type:Mammal
Subject Species:Rattus norvegicus
Taxonomy ID:10116
Age Or Age Range:26 weeks of age
Weight Or Weight Range:320-460 grams
Gender:Male
Animal Animal Supplier:RRRC (University of Missouri)
Animal Housing:Center for Comparative Medicine UConn
Animal Feed:Modified AIN-93G diet from Research Diets
Animal Water:ab libitum

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN003842 AN003843 AN003844 AN003845
Analysis type MS MS MS MS
Chromatography type Reversed phase Reversed phase Reversed phase Reversed phase
Chromatography system Prominence XR Prominence XR Prominence XR Prominence XR
Column Targa C8, 2x10 mm, 5μ Luna C18 (150 x 2.1mm,3um) Targa C8, 2x10 mm, 5μ Luna C18 (150 x 2.1mm,3um)
MS Type ESI ESI ESI ESI
MS instrument type QTRAP QTRAP QTRAP QTRAP
MS instrument name ABI Sciex 5500 QTrap ABI Sciex 5500 QTrap ABI Sciex 5500 QTrap ABI Sciex 5500 QTrap
Ion Mode NEGATIVE NEGATIVE NEGATIVE NEGATIVE
Units ng/g tissue mg/mL ng/mL mg/g tissue

Chromatography:

Chromatography ID:CH002844
Chromatography Summary:HPLC was performed on a Prominence XR system (Shimadzu) using Luna C18 (3μ, 2.1x150 mm) column. The mobile phase consisted of a gradient between A: methanol-water-acetonitrile (10:85:5 v/v) and B: methanol-water-acetonitrile (90:5:5 v/v), both containing 0.1% ammonium acetate. The gradient program with respect to the composition of B was as follows: 0-1 min, 50%; 1-8 min, 50-80%; 8-15 min, 80-95%; and 15-17 min, 95%. The flow rate was 0.2 ml/min. The HPLC eluate was directly introduced to ESI source of QTRAP5500 mass analyzer (ABSCIEX) in the negative ion mode with following conditions: Curtain gas: 35 psi, GS1: 35 psi, GS2: 65 psi, Temperature: 600 ˚C, Ion Spray Voltage: -1500 V, Collision gas: low, Declustering Potential: -60 V, and Entrance Potential: -7 V. The eluate was monitored by Multiple Reaction Monitoring method to detect unique molecular ion – daughter ion combinations for each of the lipid mediators using a scheduled MRM around the expected retention time for each compound. Optimized Collisional Energies (18 – 35 eV) and Collision Cell Exit Potentials (7 – 10 V) were used for each MRM transition. Spectra of each peak detected in the scheduled MRM were recorded using Enhanced Product Ion scan to confirm the structural identity. The data was collected using Analyst 1.6.2 software and the MRM transition chromatograms were quantitated by MultiQuant software (both from ABSCIEX). The internal standard signals in each chromatogram were used for normalization, recovery, as well as relative quantitation of each analyte.
Instrument Name:Prominence XR
Column Name:Targa C8, 2x10 mm, 5μ
Flow Rate:0.25ml/min
Chromatography Type:Reversed phase
  
Chromatography ID:CH002845
Chromatography Summary:HPLC was performed on a Prominence XR system (Shimadzu) using Luna C18 (3μ, 2.1x150 mm) column. The mobile phase consisted of a gradient between A: methanol-water-acetonitrile (10:85:5 v/v) and B: methanol-water-acetonitrile (90:5:5 v/v), both containing 0.1% ammonium acetate. The gradient program with respect to the composition of B was as follows: 0-1 min, 50%; 1-8 min, 50-80%; 8-15 min, 80-95%; and 15-17 min, 95%. The flow rate was 0.2 ml/min. The HPLC eluate was directly introduced to ESI source of QTRAP5500 mass analyzer (ABSCIEX) in the negative ion mode with following conditions: Curtain gas: 35 psi, GS1: 35 psi, GS2: 65 psi, Temperature: 600 ˚C, Ion Spray Voltage: -1500 V, Collision gas: low, Declustering Potential: -60 V, and Entrance Potential: -7 V. The eluate was monitored by Multiple Reaction Monitoring method to detect unique molecular ion – daughter ion combinations for each of the lipid mediators using a scheduled MRM around the expected retention time for each compound. Optimized Collisional Energies (18 – 35 eV) and Collision Cell Exit Potentials (7 – 10 V) were used for each MRM transition. Spectra of each peak detected in the scheduled MRM were recorded using Enhanced Product Ion scan to confirm the structural identity. The data was collected using Analyst 1.6.2 software and the MRM transition chromatograms were quantitated by MultiQuant software (both from ABSCIEX). The internal standard signals in each chromatogram were used for normalization, recovery, as well as relative quantitation of each analyte.
Instrument Name:Prominence XR
Column Name:Luna C18 (150 x 2.1mm,3um)
Flow Rate:0.2ml/min
Chromatography Type:Reversed phase
  
Chromatography ID:CH002846
Chromatography Summary:HPLC was performed on a Prominence XR system (Shimadzu) using Luna C18 (3μ, 2.1x150 mm) column. The mobile phase consisted of a gradient between A: methanol-water-acetonitrile (10:85:5 v/v) and B: methanol-water-acetonitrile (90:5:5 v/v), both containing 0.1% ammonium acetate. The gradient program with respect to the composition of B was as follows: 0-1 min, 50%; 1-8 min, 50-80%; 8-15 min, 80-95%; and 15-17 min, 95%. The flow rate was 0.2 ml/min. The HPLC eluate was directly introduced to ESI source of QTRAP5500 mass analyzer (ABSCIEX) in the negative ion mode with following conditions: Curtain gas: 35 psi, GS1: 35 psi, GS2: 65 psi, Temperature: 600 ˚C, Ion Spray Voltage: -1500 V, Collision gas: low, Declustering Potential: -60 V, and Entrance Potential: -7 V. The eluate was monitored by Multiple Reaction Monitoring method to detect unique molecular ion – daughter ion combinations for each of the lipid mediators using a scheduled MRM around the expected retention time for each compound. Optimized Collisional Energies (18 – 35 eV) and Collision Cell Exit Potentials (7 – 10 V) were used for each MRM transition. Spectra of each peak detected in the scheduled MRM were recorded using Enhanced Product Ion scan to confirm the structural identity. The data was collected using Analyst 1.6.2 software and the MRM transition chromatograms were quantitated by MultiQuant software (both from ABSCIEX). The internal standard signals in each chromatogram were used for normalization, recovery, as well as relative quantitation of each analyte.
Instrument Name:Prominence XR
Column Name:Targa C8, 2x10 mm, 5μ
Flow Rate:0.25ml/min
Chromatography Type:Reversed phase
  
Chromatography ID:CH002847
Chromatography Summary:HPLC was performed on a Prominence XR system (Shimadzu) using Luna C18 (3μ, 2.1x150 mm) column. The mobile phase consisted of a gradient between A: methanol-water-acetonitrile (10:85:5 v/v) and B: methanol-water-acetonitrile (90:5:5 v/v), both containing 0.1% ammonium acetate. The gradient program with respect to the composition of B was as follows: 0-1 min, 50%; 1-8 min, 50-80%; 8-15 min, 80-95%; and 15-17 min, 95%. The flow rate was 0.2 ml/min. The HPLC eluate was directly introduced to ESI source of QTRAP5500 mass analyzer (ABSCIEX) in the negative ion mode with following conditions: Curtain gas: 35 psi, GS1: 35 psi, GS2: 65 psi, Temperature: 600 ˚C, Ion Spray Voltage: -1500 V, Collision gas: low, Declustering Potential: -60 V, and Entrance Potential: -7 V. The eluate was monitored by Multiple Reaction Monitoring method to detect unique molecular ion – daughter ion combinations for each of the lipid mediators using a scheduled MRM around the expected retention time for each compound. Optimized Collisional Energies (18 – 35 eV) and Collision Cell Exit Potentials (7 – 10 V) were used for each MRM transition. Spectra of each peak detected in the scheduled MRM were recorded using Enhanced Product Ion scan to confirm the structural identity. The data was collected using Analyst 1.6.2 software and the MRM transition chromatograms were quantitated by MultiQuant software (both from ABSCIEX). The internal standard signals in each chromatogram were used for normalization, recovery, as well as relative quantitation of each analyte.
Instrument Name:Prominence XR
Column Name:Luna C18 (150 x 2.1mm,3um)
Flow Rate:0.2ml/min
Chromatography Type:Reversed phase
  logo