Return to study ST001683 main page

MB Sample ID: SA155232

Local Sample ID:s1164
Subject ID:SU001760
Subject Type:Mammal
Subject Species:Mus musculus
Taxonomy ID:10090
Genotype Strain:Swiss Webster
Age Or Age Range:10-14 weeks
Gender:Male

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN002747 AN002748 AN002749
Analysis type MS MS MS
Chromatography type Reversed phase Reversed phase HILIC
Chromatography system Agilent qTOF 6545 Agilent qTOF 6545 Agilent qTOF 6545
Column Waters Acquity BEH (100 x 2.1mm,1.7um) Waters Acquity BEH (100 x 2.1mm,1.7um) Waters Acquity BEH Amide (150 x 2.1mm,1.7um)
MS Type ESI ESI ESI
MS instrument type QTOF QTOF QTOF
MS instrument name Agilent qTOF 6545 Agilent qTOF 6545 Agilent qTOF 6545
Ion Mode POSITIVE NEGATIVE POSITIVE
Units Raw ion count (peak area) Raw ion count (peak area) Raw ion count (peak area)

MS:

MS ID:MS002544
Analysis ID:AN002747
Instrument Name:Agilent qTOF 6545
Instrument Type:QTOF
MS Type:ESI
MS Comments:The MS-DIAL software (v. 3.83) was used for analyzing all in vitro and in vivo data on a per-experimental run and per-analytical method basis. QC samples from each experimental run were used for peak alignment. Chemical assignment of molecular features in samples was performed by comparison of recorded RT and m/z information to our reference library constructed from authentic standards. Tolerance windows were set to 0.1 minute RT and 0.01 Da m/z for the C18 methods and 0.2 minute RT and 0.01 Da m/z for the HILIC method. The minimal peak count (height) filter was set to 3000 for all experiments except for select experiments in which the MS exhibited reduced sensitivity. For experiments where detection of internal standards goes beyond the 0.1 (C18 methods) or 0.2 (HILIC method) window, RT correction of the mz-RT reference library was conducted prior to feature annotation in MS-DIAL. The MS-DIAL analysis generated a list of m/z, RT, and ion counts (area under the curve) for high-confidence annotations (matched to the reference library) as well as unknown molecular features. Based on the list of annotations for each experiment, each set of aligned peaks was manually checked using the MS-DIAL graphical user interface. Select metabolite features were removed from this list when: 1) two adjacent but distinct peaks were concurrently assigned to a single molecular feature, 2) odd curvature/shape of the peak led to integration of several “peaks” from separate sections of the same peak, or 3) features were only detected in blank controls. Annotated peaks that passed this inspection were reported in the final output file. After MS-DIAL analysis, data were analyzed with a set of custom bioinformatics pipelines. In short, these pipelines implemented a set of filtration and normalization procedures with the goal of reducing technical variability and controlling for batch effects.
Ion Mode:POSITIVE
  
MS ID:MS002545
Analysis ID:AN002748
Instrument Name:Agilent qTOF 6545
Instrument Type:QTOF
MS Type:ESI
MS Comments:The MS-DIAL software (v. 3.83) was used for analyzing all in vitro and in vivo data on a per-experimental run and per-analytical method basis. QC samples from each experimental run were used for peak alignment. Chemical assignment of molecular features in samples was performed by comparison of recorded RT and m/z information to our reference library constructed from authentic standards. Tolerance windows were set to 0.1 minute RT and 0.01 Da m/z for the C18 methods and 0.2 minute RT and 0.01 Da m/z for the HILIC method. The minimal peak count (height) filter was set to 3000 for all experiments except for select experiments in which the MS exhibited reduced sensitivity. For experiments where detection of internal standards goes beyond the 0.1 (C18 methods) or 0.2 (HILIC method) window, RT correction of the mz-RT reference library was conducted prior to feature annotation in MS-DIAL. The MS-DIAL analysis generated a list of m/z, RT, and ion counts (area under the curve) for high-confidence annotations (matched to the reference library) as well as unknown molecular features. Based on the list of annotations for each experiment, each set of aligned peaks was manually checked using the MS-DIAL graphical user interface. Select metabolite features were removed from this list when: 1) two adjacent but distinct peaks were concurrently assigned to a single molecular feature, 2) odd curvature/shape of the peak led to integration of several “peaks” from separate sections of the same peak, or 3) features were only detected in blank controls. Annotated peaks that passed this inspection were reported in the final output file. After MS-DIAL analysis, data were analyzed with a set of custom bioinformatics pipelines. In short, these pipelines implemented a set of filtration and normalization procedures with the goal of reducing technical variability and controlling for batch effects.
Ion Mode:NEGATIVE
  
MS ID:MS002546
Analysis ID:AN002749
Instrument Name:Agilent qTOF 6545
Instrument Type:QTOF
MS Type:ESI
MS Comments:The MS-DIAL software (v. 3.83) was used for analyzing all in vitro and in vivo data on a per-experimental run and per-analytical method basis. QC samples from each experimental run were used for peak alignment. Chemical assignment of molecular features in samples was performed by comparison of recorded RT and m/z information to our reference library constructed from authentic standards. Tolerance windows were set to 0.1 minute RT and 0.01 Da m/z for the C18 methods and 0.2 minute RT and 0.01 Da m/z for the HILIC method. The minimal peak count (height) filter was set to 3000 for all experiments except for select experiments in which the MS exhibited reduced sensitivity. For experiments where detection of internal standards goes beyond the 0.1 (C18 methods) or 0.2 (HILIC method) window, RT correction of the mz-RT reference library was conducted prior to feature annotation in MS-DIAL. The MS-DIAL analysis generated a list of m/z, RT, and ion counts (area under the curve) for high-confidence annotations (matched to the reference library) as well as unknown molecular features. Based on the list of annotations for each experiment, each set of aligned peaks was manually checked using the MS-DIAL graphical user interface. Select metabolite features were removed from this list when: 1) two adjacent but distinct peaks were concurrently assigned to a single molecular feature, 2) odd curvature/shape of the peak led to integration of several “peaks” from separate sections of the same peak, or 3) features were only detected in blank controls. Annotated peaks that passed this inspection were reported in the final output file. After MS-DIAL analysis, data were analyzed with a set of custom bioinformatics pipelines. In short, these pipelines implemented a set of filtration and normalization procedures with the goal of reducing technical variability and controlling for batch effects.
Ion Mode:POSITIVE
  logo