Return to study ST002352 main page

MB Sample ID: SA249745

Local Sample ID:MED1 Aqueous Sample 4
Subject ID:SU002592
Subject Type:Mammal
Subject Species:Mus musculus
Taxonomy ID:10090

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN004097 AN004098
Analysis type MS MS
Chromatography type Normal phase Normal phase
Chromatography system Agilent Model 1290 Infinity II liquid chromatography system Agilent Model 1290 Infinity II liquid chromatography system
Column Cogent Diamond Hydride (150 × 2.1 mm, 4um) Cogent Diamond Hydride (150 × 2.1 mm, 4um)
MS Type ESI ESI
MS instrument type QTOF QTOF
MS instrument name Agilent 6550 QTOF Agilent 6550 QTOF
Ion Mode POSITIVE NEGATIVE
Units Ion counts Ion counts

MS:

MS ID:MS003844
Analysis ID:AN004097
Instrument Name:Agilent 6550 QTOF
Instrument Type:QTOF
MS Type:ESI
MS Comments:LC/MS-based targeted and untargeted metabolite profiling. For targeted analysis, raw LC/MS data was extracted by MassProfinder 8.0 (Agilent Technologies) using an in-house annotated personal metabolite database that contains 863 metabolites (Agilent Technologies). Additionally, molecular feature extraction (MFE) was performed for untargeted metabolite profiling using MassProfinder 8.0 (Agilent Technologies). The untargeted molecular features were imported into MassProfiler Professional 15.1 (MPP, Agilent Technologies) and searched against Metlin personal metabolite database (PCDL database 8.0), Human Metabolome Database (HMDB) and an in-house phospholipid database for tentative metabolite ID assignments, based on monoisotopic neutral mass (< 5 ppm mass accuracy) matches. Furthermore, a molecular formula generator (MFG) algorithm in MPP was used to generate and score empirical molecular formulae, based on a weighted consideration of monoisotopic mass accuracy, isotope abundance ratios, and spacing between isotope peaks. A tentative compound ID was assigned when PCDL database and MFG scores concurred for a given candidate molecule. Tentatively assigned molecules were reextracted using Profinder 8.0 for confirmation of untargeted results. For phospholipids, assignment of IDs was based on the defined pattern of neutral loss and head group fragment ions. Metabolites from targeted and untargeted extraction were combined for further statistical analysis among groups of input, aqueous and condensate fractions. Metabolites were removed from our analysis if they had a low ion count or high variation in input samples. Measurements of metabolite ion counts in input samples should be replicates across experiments. As such, differences in metabolite ion counts reflect experimental variability. To determine appropriate cut-offs, we examined the relationship between metabolite ion counts and their variation across input sample technical replicates. Metabolites with a median of < 1000 ion counts/sample tended to have high variation across samples. As a result, these metabolites were removed. Metabolites were also removed with > 2.5 standard deviation in log2(ion counts) since the input measurements for these metabolites were particularly unreliable relative to what was observed for other metabolites.
Ion Mode:POSITIVE
  
MS ID:MS003845
Analysis ID:AN004098
Instrument Name:Agilent 6550 QTOF
Instrument Type:QTOF
MS Type:ESI
MS Comments:LC/MS-based targeted and untargeted metabolite profiling. For targeted analysis, raw LC/MS data was extracted by MassProfinder 8.0 (Agilent Technologies) using an in-house annotated personal metabolite database that contains 863 metabolites (Agilent Technologies). Additionally, molecular feature extraction (MFE) was performed for untargeted metabolite profiling using MassProfinder 8.0 (Agilent Technologies). The untargeted molecular features were imported into MassProfiler Professional 15.1 (MPP, Agilent Technologies) and searched against Metlin personal metabolite database (PCDL database 8.0), Human Metabolome Database (HMDB) and an in-house phospholipid database for tentative metabolite ID assignments, based on monoisotopic neutral mass (< 5 ppm mass accuracy) matches. Furthermore, a molecular formula generator (MFG) algorithm in MPP was used to generate and score empirical molecular formulae, based on a weighted consideration of monoisotopic mass accuracy, isotope abundance ratios, and spacing between isotope peaks. A tentative compound ID was assigned when PCDL database and MFG scores concurred for a given candidate molecule. Tentatively assigned molecules were reextracted using Profinder 8.0 for confirmation of untargeted results. For phospholipids, assignment of IDs was based on the defined pattern of neutral loss and head group fragment ions. Metabolites from targeted and untargeted extraction were combined for further statistical analysis among groups of input, aqueous and condensate fractions. Metabolites were removed from our analysis if they had a low ion count or high variation in input samples. Measurements of metabolite ion counts in input samples should be replicates across experiments. As such, differences in metabolite ion counts reflect experimental variability. To determine appropriate cut-offs, we examined the relationship between metabolite ion counts and their variation across input sample technical replicates. Metabolites with a median of < 1000 ion counts/sample tended to have high variation across samples. As a result, these metabolites were removed. Metabolites were also removed with > 2.5 standard deviation in log2(ion counts) since the input measurements for these metabolites were particularly unreliable relative to what was observed for other metabolites.
Ion Mode:NEGATIVE
  logo