Summary of Study ST001315

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000892. The data can be accessed directly via it's Project DOI: 10.21228/M8CX0M This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001315
Study TitleRetargeting azithromycin-like compounds as antimalarials with dual modality
Study SummaryResistance to front-line antimalarials (artemisinin combination therapies) is spreading, and development of new drug treatment strategies to rapidly kill Plasmodium parasites that cause malaria are urgently needed. Here, we show that azithromycin—a clinically used macrolide antibiotic that targets the bacterium-like ribosome of the malaria parasites apicoplast organelle and causes a slow-killing ‘delayed death’ phenotype—can also rapidly kill parasites throughout the asexual blood-stages of the lifecycle via a ‘quick-killing’ mechanism of action. Investigation of 84 azithromycin analogues revealed nanomolar quick-killing potency that is directed against the very earliest stage of parasite development within red blood cells. Indeed, the best analogue exhibited 1600-fold higher potency than azithromycin for in vitro treatment windows less than 48 hours. Analogues were also effective against the zoonotic malaria parasite P. knowlesi, and against both multi-drug and artemisinin resistant P. falciparum lines. Metabolomic profiles of azithromycin analogue treated parasites were similar to those of chloroquine treated parasites, suggesting that the quick-killing mechanism of action may in part be localised to the parasite food vacuole. However, metabolomic signatures associated with mitochondrial disruption were also present. In addition, unlike chloroquine, azithromycin and analogues were active across blood stage development, including merozoite invasion, suggesting that these macrolides have a multi-factorial mechanism of quick-killing activity. The positioning of functional groups added to azithromycin and its quick-killing analogues altered their activity against bacterial-like ribosomes but had minimal change on quick-killing activity, which suggests that apicoplast-targeting, delayed-death activity can either be preserved or removed independently of quick-killing. Apicoplast minus parasites remained susceptible to both azithromycin and its analogues, further demonstrating that quick-killing is independent of apicoplast-targeting, delayed-death activity. Therefore, development of azithromycin and analogues as antimalarials offers the possibility of targeting parasites through both a quick-killing and delayed death mechanism of action in a single, multifactorial chemotype.
Institute
Monash University
Last NameSiddiqui
First NameGhizal
Address381 Royal Parade, Parkville, Melbourne, Victoria, 3052, Australia
Emailghizal.siddiqui@monash.edu
Phone99039282
Submit Date2020-02-06
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2020-03-03
Release Version1
Ghizal Siddiqui Ghizal Siddiqui
https://dx.doi.org/10.21228/M8CX0M
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN002189 AN002190
Analysis type MS MS
Chromatography type HILIC HILIC
Chromatography system Thermo Dionex Ultimate 3000 Thermo Dionex Ultimate 3000
Column SeQuant ZIC-pHILIC (150 x 4.6 mm, 5µm) SeQuant ZIC-pHILIC (150 x 4.6 mm, 5µm)
MS Type ESI ESI
MS instrument type Orbitrap Orbitrap
MS instrument name Thermo Q Exactive Orbitrap Thermo Q Exactive Orbitrap
Ion Mode POSITIVE NEGATIVE
Units Signal Intensity Signal Intensity
  logo