Summary of Study ST000483

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000367. The data can be accessed directly via it's Project DOI: 10.21228/M8MC7X This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files
Study IDST000483
Study TitleAmino Acid Quantifcation of obese patients on a 16 week caloric restriction from Plasma
Study Typetimecourse, quantitative measurements of amino acid
Study SummaryCaloric restriction (CR) improves insulin sensitivity and reduces the incidence of diabetes in obese individuals. The underlying mechanisms whereby CR improves insulin sensitivity are not clear. We evaluated the effect of 16 weeks of CR on whole-body insulin sensitivity by pancreatic clamp before and after CR in 11 obese participants (BMI = 35 kg/m2) compared with 9 matched control subjects (BMI = 34 kg/m2). Compared with the control subjects, CR increased the glucose infusion rate needed to maintain euglycemia during hyperinsulinemia, indicating enhancement of peripheral insulin sensitivity. This improvement in insulin sensitivity was not accompanied by changes in skeletal muscle mitochondrial oxidative capacity or oxidant emissions, nor were there changes in skeletal muscle ceramide, diacylglycerol, or amino acid metabolite levels. However, CR lowered insulin-stimulated thioredoxin-interacting protein (TXNIP) levels and enhanced nonoxidative glucose disposal. These results support a role for TXNIP in mediating the improvement in peripheral insulin sensitivity after CR.
Institute
Mayo Clinic
DepartmentEndocrinology
LaboratoryMayo Clinic Metabolomics Resource Core
Last NameNair
First NameSreekumaran
Address200 First Street SW, Rochester, MN 55905
EmailNair.K@mayo.edu
Phone507-285-2415
Submit Date2016-09-23
PublicationsMechanism by Which Caloric Restriction Improves Insulin Sensitivity in Sedentary Obese Adults. DOI: 10.2337/db15-0675
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2016-12-22
Release Version1
Sreekumaran Nair Sreekumaran Nair
https://dx.doi.org/10.21228/M8MC7X
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN000749
Analysis type MS
Chromatography type Reversed phase
Chromatography system Waters Acquity
Column C18
MS Type ESI
MS instrument type Triple quadrupole
MS instrument name Thermo Quantum Ultra
Ion Mode POSITIVE
Units micromolar

Chromatography:

Chromatography ID:CH000537
Chromatography Summary:High resolution separation was done using an Acquity UPLC system, injecting 1 µl of derviatized solution, with a UPLC BEH C18 1.7 micron 2.1×150 mm column from Waters. Column flow was set to 400 µl/min with a gradient from 99.9%A to 98%B where buffer A is 1% acetonitrile in 0.1% formic acid and buffer B is 100% acetonitrile. A column temp of 43 degrees Celsius and a sample tray temp of 6% Celsius. Mass detection was completed on a TSQ Ultra Quantum from Thermo Finnigan running in ESI positive mode. A scan width of 0.002, scan time of 0.04 seconds per transition mass, collision energy of 25, collision gas pressure of 1.5 mTorr, tube lens value set to 90, monitoring a signature ion of the derivitized amines at m/z 171.04 by selected reaction monitoring.
Instrument Name:Waters Acquity
Column Name:C18
Chromatography Type:Reversed phase
  logo