Summary of Study ST000954

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench,, where it has been assigned Project ID PR000655. The data can be accessed directly via it's Project DOI: 10.21228/M80X1K This work is supported by NIH grant, U2C- DK119886.


This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST000954
Study TitleExplore Metabolites and Pathways Associated Increased Airway Hyperresponsiveness in Asthma
Study TypeOpen-label, prospective cohort study
Study SummaryAsthma is a heterogeneous disease largely defined by chronic airway inflammation with similar symptomatology in patients that includes wheezing, shortness of breath, chest tightness and cough. However, underlying these common symptoms are varying endotypes with distinct pathophysiological processes. Metabolomic studies in patients with asthma are emerging and suggest that metabolomics can characterize distinct asthma phenotypes. In a completed study, we identified a population of patients with asthma who have increased airway hyperresponsiveness (airway hyperresponsiveness is a marker for asthma disease severity) who are characterized by race (African American) and genotype (ADRB2 Arg16/Arg) compared with patients who have less airway hyperresponsiveness (African Americans and whites with differing ADRB2 genotypes). This group may represent a distinct endotype of asthma with unique metabolomic and lipidomic characteristics. The aims of this project are to (1) use metabolomic and lipidomic analysis to identify metabolites present in plasma in this population of patients with asthma who have increased airway hyperresponsiveness (African Americans who carry the ADRB2 Arg16/Arg genotype) and patients with asthma who have less airway hyperresponsiveness (African Americans and whites with differing ADRB2 genotypes); and (2) identify pathways that will improve the understanding of increased airway hyperresponsiveness in this population. We hypothesize that there will be unique metabolic pathways in the population with increased airway hyperresponsiveness that will be distinct from pathways in patients with lower airway hyperresponsiveness. In this project will use data and samples that were previously collected as part of the NIH funded project “Pharmacogenetics of β2-Agonists in Asthma” (Blake, PI K23 HL081245). Blood was collected in 55 African Americans and whites after receiving 2-weeks treatment with inhaled fluticasone. Samples were stored on ice until processed and plasma frozen at -80°C. If our findings indicate distinct metabolic pathways are present using global metabolomic and lipodomic analysis, we will seek to replicate our findings using samples and data from phenotypically well characterized participants who participated in trials conducted through the American Lung Association Airways Clinical Research Centers network, of which Nemours has been a highly productive site since 1999. Future controlled trials would be conducted to evaluate treatments based upon molecular pathways identified through metabolomic and lipidomic analysis.
University of Florida
Last NameBeecher
First NameChris
AddressPO Box 100219 Gainesville FL 32610-0219 , Southeast Center for Integrated Metabolomics
Phone(352) 294-4385
Submit Date2018-04-13
Num Groups4
Total Subjects55
Study CommentsNubmer of groups : 4 (race x diplotype); SECIM pilot and feasibility, NIH U24 DK097209
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2021-01-19
Release Version1
Chris Beecher Chris Beecher application/zip

Select appropriate tab below to view additional metadata details:

Combined analysis:

Analysis ID AN001564 AN001565
Analysis type MS MS
Chromatography type Reversed phase Reversed phase
Chromatography system Thermo Dionex Ultimate 3000 Thermo Dionex Ultimate 3000
Column ACE Excel 2 C18-PFP (100 x 2.1mm, 2um) ACE Excel 2 C18-PFP (100 x 2.1mm, 2um)
MS instrument type Orbitrap Orbitrap
MS instrument name Thermo Q Exactive Orbitrap Thermo Q Exactive Orbitrap
Units Peak Height Peak height


Chromatography ID:CH001097
Instrument Name:Thermo Dionex Ultimate 3000
Column Name:ACE Excel 2 C18-PFP (100 x 2.1mm, 2um)
Flow Rate:350 ul/min
Solvent A:100% water; 0.1% formic acid
Solvent B:100% acetonitrile
Chromatography Type:Reversed phase