Summary of Study ST002852

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001786. The data can be accessed directly via it's Project DOI: 10.21228/M8VB1G This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002852
Study TitleMYC is a regulator of androgen receptor inhibition-induced metabolic requirements in prostate cancer
Study SummaryAdvanced prostate cancers are treated with therapies targeting the androgen receptor (AR) signaling pathway. While many tumors initially respond to AR inhibition, nearly all develop resistance. It is critical to understand how prostate tumor cells respond to AR inhibition in order to exploit therapy-induced phenotypes prior to the outgrowth of treatment-resistant disease. Here, we comprehensively characterize the effect of AR blockade on prostate cancer metabolism using transcriptomics, metabolomics and bioenergetics approaches. The metabolic response to AR inhibition is defined by reduced glycolysis, robust elongation of mitochondria, and increased reliance on mitochondrial oxidative metabolism. We establish DRP1 activity and MYC signaling as mediators of AR blockade-induced metabolic phenotypes. Rescuing DRP1 phosphorylation after AR inhibition restores mitochondrial fission, while rescuing MYC restores glycolytic activity and prevents sensitivity to complex I inhibition. Our study provides new insight into the regulation of treatment-induced metabolic phenotypes and vulnerabilities in prostate cancer.
Institute
University of California, Los Angeles
DepartmentBiological Chemistry
LaboratoryHeather Christofk
Last NameMatulionis
First NameNedas
Address615 Charles E Young Dr S, BSRB 354-05
Emailnmatulionis@mednet.ucla.edu
Phone3102060163
Submit Date2023-09-07
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2023-09-11
Release Version1
Nedas Matulionis Nedas Matulionis
https://dx.doi.org/10.21228/M8VB1G
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN004672 AN004673
Analysis type MS MS
Chromatography type HILIC HILIC
Chromatography system Thermo Vanquish Thermo Vanquish
Column SeQuant ZIC- pHILIC (150 x 2.1mm,5um) SeQuant ZIC- pHILIC (150 x 2.1mm,5um)
MS Type ESI ESI
MS instrument type Orbitrap Orbitrap
MS instrument name Thermo Q Exactive Orbitrap Thermo Q Exactive Orbitrap
Ion Mode POSITIVE NEGATIVE
Units Peak Area Peak Area

Chromatography:

Chromatography ID:CH003516
Chromatography Summary:Samples were run on a Vanquish (Thermo Fisher Scientific) UHPLC system with mobile phase A (20mM ammonium carbonate, pH 9.7) and mobile phase B (100% ACN) at a flow rate of 150 µL/min on a SeQuant ZIC-pHILIC Polymeric column (2.1 × 150 mm 5 μm, EMD Millipore) at 35°C. Separation was achieved with a linear gradient from 20% A to 80% A in 20 minutes followed by a linear gradient from 80% A to 20% A from 20 minutes to 20.5 minutes. 20% A was then held from 20.5 minutes to 28 minutes.
Instrument Name:Thermo Vanquish
Column Name:SeQuant ZIC- pHILIC (150 x 2.1mm,5um)
Column Temperature:35°C
Flow Gradient:Linear gradient was as follows: 20%A to 80%A (0-20 min), 80%A to 20%A (20-20.5 min), hold 20%A (20.5-28.0 min).
Flow Rate:150 µL/min
Solvent A:20 mM Ammonium carbonate, pH 9.7
Solvent B:100% Acetonitrile
Chromatography Type:HILIC
  logo