Summary of study ST001356

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000926. The data can be accessed directly via it's Project DOI: 10.21228/M80H4K This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  |  Download all metabolite data  |  Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data (Contains raw data)
Study IDST001356
Study TitleDiel Metabolites in the North Pacific Subtropical Gyre (KM1513)
Study TypeDiel metabolomics
Study SummaryDiverse organisms within the marine microbial communities show 24-hour cycles of gene expression, likely driven by the need to harness energy from sunlight and to cope with dramatic fluctuations in solar radiation over the course of the day. Metabolites are the direct product of metabolic activity; they are therefore expected to both reflect and influence the daily cycle of the microbial community. Here we measure the intracellular metabolome of the microbial community of the North Pacific Subtropical Gyre, sampled at 4-hour intervals for 8 days. Concentrations of some metabolites common to many organisms exhibit diel periodicity, revealing synchrony of community-level metabolism. Comparing these data to gene expression data reveals temporal offsets between gene transcription and cellular activity, and ties some metabolites to the activities of specific organisms. For example, the dramatic fluctuations of the disaccharide trehalose likely reflect the daily cycles of {Crocosphaera}, a photosynthesizing cyanobacteria that needs to store energy during the day to fuel nighttime nitrogen-fixation. This study illustrates how pairing multiple types of 'omics and environmental data can provide insight into how the activities of individual organisms lead to community functions such as net primary productivity and nitrogen fixation.
Institute
University of Washington
DepartmentOceanography
LaboratoryIngalls Lab
Last NameBoysen
First NameAngela
Address1502 NE Boat St
Emailaboysen@uw.edu
Phone3037461944
Submit Date2020-03-23
Raw Data AvailableYes
Raw Data File Type(s).mzXML
Analysis Type DetailLC-MS
Release Date2020-07-21
Release Version1
Angela Boysen Angela Boysen
https://dx.doi.org/10.21228/M80H4K
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Collection:

Collection ID:CO001425
Collection Summary:Samples for particulate metabolites were collected from 15 m water depth by niskin bottles attached to a conductivity, temperature, depth array (CTD). Metabolite samples were collected in triplicate at each time point by filtering approximately 3.5 L of seawater onto 47 mm 0.2 micron Omnipore filters using peristaltic pumps, polycarbonate filter holders, and Masterflex PharMed BPT tubing (Cole-Parmer). Filters were frozen in liquid nitrogen immediately after filtration and stored in a -80 C freezer until extraction.
Sample Type:Suspended Marine Particulate Matter
  logo