Summary of Study ST002775

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001575. The data can be accessed directly via it's Project DOI: 10.21228/M83X51 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002775
Study TitleZebrafish Retina Regeneration Metabolomics - 3 Days Post Crush
Study SummaryRetinal regeneration has been at the forefront of optic research. Regenerative model organisms provide key information regarding treatment for optic nerve and retinal degeneration in mammalian species; specifically, Zebrafish (Danio Rerio) have the capacity for successful adult retinal regeneration. Mammals, however, lack this intrinsic ability and undergo irreversible neurodegeneration seen in glaucoma, diabetes and other optic neuropathies. Optic nerve and retinal regeneration are often studied using the retina obtained via optic nerve crush, a mechanical neurodegenerative model. Untargeted metabolomic studies within successful regenerative models are deficient. Evaluation of tissue metabolomic changes in active zebrafish retinal regeneration can elucidate prioritized metabolite pathways that can be targeted in mammalian systems for therapeutic development. Female and male (6 month to 1 year old) right Zebrafish (Tg(gap43:GFP)) optic nerves were crushed and the retinas were collected three days after. Contralateral, uninjured optic nerve retinas were collected as controls. The tissue was dissected from euthanized fish and frozen on dry ice. Samples were pooled for each category (female crush, female control, male crush, male control) and pooled at n = 10-12 to obtain sufficient metabolite concentrations for analysis. Retinal regeneration was verified by microscope visualization of GFP fluorescence. Metabolites were extracted using a Precellys Homogenizer and a serial extraction method: (1) 1:1 Methanol/Water and (2) 8:1:1 Acetonitrile/Methanol/Acetone. Metabolites were analyzed by untargeted liquid chromatography-mass spectrometry (LC MS-MS) profiling using a Q-Exactive Orbitrap instrument coupled with Vanquish Horizon Binary UHPLC LC-MS system. Metabolites were identified and quantified using Compound Discoverer 3.3 and isotopic internal metabolites standards.
Institute
University of Miami
DepartmentMcKnight - Ophthalmology
LaboratoryBhattacharya Lab
Last NameBhattacharya
First NameSanjoy
Address1638 NW 10th Avenue, Room 706-A, Miami, FL 33136
Emailsbhattacharya@med.miami.edu
Phone3054824103
Submit Date2023-06-20
Num Groups2
Total Subjects67
Num Males36
Num Females31
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2023-08-07
Release Version1
Sanjoy Bhattacharya Sanjoy Bhattacharya
https://dx.doi.org/10.21228/M83X51
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Collection:

Collection ID:CO002875
Collection Summary:In the tissue collection process, mice were euthanized using an overdose of MS-222. The optic nerve was removed via dissection from the optic nerve head to the optic chiasm. The retinas of both female and male Zebrafish were collected and separated into biological samples. Due to the small tissue and metabolomics resolution constraints, optic nerves were pooled to generate higher signal intensities. A total of 10-11 and 12 retinas were pooled from female and male zebrafish samples, respectively. The untreated retinas were pooled using the same protocol.
Sample Type:Eye tissue
  logo