Summary of Study ST002225

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001418. The data can be accessed directly via it's Project DOI: 10.21228/M8F409 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002225
Study TitleTime sensitive contribution of the BCAA catabolism to the TCA cycle carbons in HK2, 786-O, OS-RC-2 and RFX-631
Study SummaryThe objective of this experiment is to test the contribution of the branched chain amino acids catabolism to the carbons used in the TCA cycle. To test this hypothesis, we incubated human renal epithelial cells (HK2) and ccRCC cell lines (786-O, 786-M1A, OS-RC-2, OS-LM1, RFX-631) with 13C6-leucine and 13C6-isoleucine in Plasmax media for 10 mins, 1 hour and 3 hours. Data were generated from 5 independent cultures. This is Part 4 of the study and the experiment number is MS52.
Institute
CECAD Research Center
Last NameYang
First NameMing
AddressJoseph-Stelzmann-Straße 26, Köln, Koeln, 50931, Germany
Emailming.yang@uni-koeln.de
Phone4922147884306
Submit Date2022-07-15
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2022-08-03
Release Version1
Ming Yang Ming Yang
https://dx.doi.org/10.21228/M8F409
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN003634
Analysis type MS
Chromatography type HILIC
Chromatography system Thermo Dionex Ultimate 3000
Column SeQuant ZIC-pHILIC
MS Type ESI
MS instrument type Orbitrap
MS instrument name Thermo Q Exactive Orbitrap
Ion Mode UNSPECIFIED
Units peak area

MS:

MS ID:MS003385
Analysis ID:AN003634
Instrument Name:Thermo Q Exactive Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Metabolites were measured with a Thermo Scientific Q Exactive Hybrid Quadrupole-Orbitrap Mass spectrometer (HRMS) coupled to a Dionex Ultimate 3000 UHPLC. The mass spectrometer was operated in full-scan, polarity-switching mode, with the spray voltage set to +4.5 kV/-3.5 kV, the heated capillary held at 320 °C, and the auxiliary gas heater held at 280 °C. The sheath gas flow was set to 55 units, the auxiliary gas flow was set to 15 units, and the sweep gas flow was set to 0 unit. HRMS data acquisition was performed in a range of m/z = 70–900, with the resolution set at 70,000, the AGC target at 1 × 106, and the maximum injection time (Max IT) at 120 ms. Metabolite identities were confirmed using two parameters: (1) precursor ion m/z was matched within 5 ppm of theoretical mass predicted by the chemical formula; (2) the retention time of metabolites was within 5% of the retention time of a purified standard run with the same chromatographic method. Chromatogram review and peak area integration were performed using the Thermo Fisher software Tracefinder 5.0 and the peak area for each detected metabolite was normalized against the total ion count (TIC) of that sample to correct any variations introduced from sample handling through instrument analysis. The normalized areas were used as variables for further statistical data analysis.
Ion Mode:UNSPECIFIED
  logo