Summary of Study ST002470

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001596. The data can be accessed directly via it's Project DOI: 10.21228/M8D701 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002470
Study TitleLinking bacterial metabolites to disease-associated microbes to uncover mechanisms of host-microbial interactions in intestinal inflammation. Human plasma profiling
Study SummaryUnderstanding the role of the gut microbiome in inflammatory and autoimmune diseases requires the identification of microbial molecular effectors and their link to host pathophysiology. Here, we present a framework to identify and characterize novel microbial metabolites in patient samples and to directly link their production to disease-associated microbes. We applied this approach to investigate the spectrum of disease severity and treatment response in ulcerative colitis (UC) using longitudinal metabolite and strain profiles combined with paired plasma profiles.
Institute
Broad Institute of MIT and Harvard
Last NameXavier
First NameRamnik
Address415 Main Street
Emailrxavier@broadinstitute.org
Phone617717084
Submit Date2023-02-07
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2024-02-12
Release Version1
Ramnik Xavier Ramnik Xavier
https://dx.doi.org/10.21228/M8D701
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Sample Preparation:

Sampleprep ID:SP002566
Sampleprep Summary:LC-MS samples were prepared for four profiling methods from plasma samples as follows: HILIC-pos: Metabolites were extracted by adding 90 μL of 74.9:24.9:0.2 v/v/v acetonitrile/methanol/formic acid containing stable isotope-labeled internal standards (valine-d8, Isotec; and phenylalanine-d8, Cambridge Isotope Laboratories; Andover, MA) to a 10 μL aliquot of plasma. Samples were vortexed and then centrifuged (10 min, 9,000 x g, 4°C) to pellet protein precipitates. Supernatants were transferred to glass autosampler vials containing inserts for LC-MS analysis. C8-pos: Lipids were extracted by adding 190 μL of isopropanol containing 1-dodecanoyl-2-tridecanoyl-sn-glycero-3-phosphocholine as an internal standard (Avanti Polar Lipids; Alabaster, AL) to a 10 μL aliquot of plasma. Samples were vortexed and then centrifuged (10 min, 9,000 x g, ambient temperature) to pellet protein precipitates. Supernatants were transferred to glass autosampler vials containing inserts for LC-MS analysis. HILIC-neg: Metabolites were extracted by adding 120 μL of 80% methanol containing inosine-15N4, thymine-d4 and glycocholate-d4 internal standards (Cambridge Isotope Laboratories; Andover, MA) to a 30 μL aliquot of plasma. Samples were vortexed and then centrifuged (10 min, 9,000 x g, 4°C) to pellet protein precipitates. Supernatants were transferred to glass autosampler vials containing inserts for LC-MS analysis. C18-neg: Metabolites were extracted by adding 90 μL of methanol containing PGE2-d4 as an internal standard (Cayman Chemical Co.; Ann Arbor, MI) to a 30 μL aliquot of plasma. Samples were vortexed and then centrifuged (10 min, 9,000 x g, 4°C) to pellet protein precipitates. Supernatants were transferred to glass autosampler vials containing inserts for LC-MS analysis.
  logo