Summary of Study ST002773

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001730. The data can be accessed directly via it's Project DOI: 10.21228/M8371M This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002773
Study TitleA nested case-control study of untargeted plasma metabolomics and lung cancer risk among never-smoking women in Shanghai Women’s Health Study
Study SummaryBackground: The etiology of lung cancer among never smokers has not been fully elucidated despite 15% of cases in men and 53% in women worldwide are not smoking-related. Metabolomics provides a snapshot of dynamic biochemical activities, including those found to be driving tumor formation and progression. This study used untargeted metabolomics with network analysis to agnostically identify network modules and independent metabolites in pre-diagnostic blood samples among never-smokers to further understand the pathogenesis of lung cancer. Methods and Findings: Within the prospective Shanghai Women’s Health Study, we conducted a nested case-control study of 395 never-smoking incident lung cancer cases and 395 never-smoking controls matched on age. We performed liquid chromatography high-resolution mass spectrometry to quantify 20,348 metabolic features in plasma. We agnostically constructed 28 network modules using a weighted correlation network analysis approach and assessed associations for network modules and individual metabolites with lung cancer using conditional logistic regression models, adjusting for covariates. We accounted for multiple testing using a false discovery rate (FDR) < 0.20. We identified a network module of 122 metabolic features enriched in lysophosphatidylethanolamines that was associated with all lung cancer combined (p = 0.001, FDR = 0.028) and lung adenocarcinoma (p = 0.002, FDR = 0.056) and another network module of 440 metabolic features that was associated with lung adenocarcinoma (p = 0.014, FDR = 0.196). Metabolic features were enriched in pathways associated with cell growth and proliferation, including oxidative stress, bile acid biosynthesis, and metabolism of nucleic acids, carbohydrates, and amino acids, including 1-carbon compounds. Conclusions: Our prospective study suggests that untargeted plasma metabolomics in pre-diagnostic samples could provide new insights into the etiology of lung cancer in never-smokers. Replication and further characterization of these associations are warranted.
Institute
Emory University
DepartmentGangarosa Department of Environmental Health
LaboratoryComprehensive Laboratory for Untargeted Exposome Science
Last NameWalker
First NameDouglas
Address1518 Clifton Rd, CNR 7025, Atlanta, GA 30322
Emaildouglas.walker@emory.edu
Phone(404) 727-6123
Submit Date2023-06-19
Num Groups2
Total Subjects790
Num Females790
Study CommentsSamples were collected from participants enrolled in the Shanghai Women's Health Study
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2024-02-28
Release Version1
Douglas Walker Douglas Walker
https://dx.doi.org/10.21228/M8371M
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Sample Preparation:

Sampleprep ID:SP002886
Sampleprep Summary:Samples are prepared for metabolomics analysis using established methods (Johnson et al. (2010). Analyst; Go et al. (2015). Tox Sci). Prior to analysis, plasma aliquots were removed from storage at -80°C and thawed on ice. Each cryotube is then vortexed briefly to ensure homogeneity, and 50 μL transferred to a clean microfuge tube. Immediately after, the plasma is treated with 100 μL of ice-cold LC-MS grade acetonitrile (Sigma Aldrich) containing 2.5 μL of internal standard solution with eight stable isotopic chemicals selected to cover a range of chemical properties. Following addition of acetonitrile, plasma is then equilibrated for 30 min on ice, upon which precipitated proteins are removed by centrifuge (16.1 ×g at 4°C for 10 min). The resulting supernatant (100 μL) is removed, added to a low volume autosampler vial and maintained at 4°C until analysis (<22 h).
Sampleprep Protocol ID:EmoryUniversity_HRM_SP_082016_01.pdf
Sampleprep Protocol Filename:EmoryUniversity_HRM_SP_082016_01.pdf
Processing Method:Protein Precipitation with Acetonitrile
Processing Storage Conditions:On ice
  logo