Summary of Study ST002450

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001580. The data can be accessed directly via it's Project DOI: 10.21228/M8G711 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002450
Study TitleAPOE modulates microglial immunometabolism in response to age, amyloid pathology, and inflammatory challenge (Part 1 of 3)
Study SummaryThe E4 allele of Apolipoprotein E (APOE) is associated with both metabolic dysfunction and a heightened pro-inflammatory response – two findings that may be intrinsically linked through the concept of immunometabolism. Here, we combined bulk, single-cell, and spatial transcriptomics with cell-specific and spatially resolved metabolic analyses to systematically address the role of APOE across age, neuroinflammation, and AD pathology. RNAseq highlighted immunometabolic changes across the APOE4 glial transcriptome, specifically in subsets of metabolically distinct microglia enriched in the E4 brain during aging or following an inflammatory challenge. E4 microglia display increased Hif1α expression, a disrupted TCA cycle, and are inherently pro-glycolytic, while spatial transcriptomics and MALDI mass spectrometry imaging highlight an E4-specific response to amyloid that is characterized by widespread alterations in lipid metabolism. Taken together, our findings emphasize a central role for APOE in regulating microglial immunometabolism.
Institute
University of Kentucky, Department of Physiology
Last NameDevanney
First NameNicholas
AddressPhysiology, 760 Press Ave, Healthy Kentucky Research Bldg, Rm152, Lexington, Kentucky, 40508, USA
EmailNicholas.Devanney@uky.edu
Phone8593238083
Submit Date2022-09-20
Raw Data AvailableYes
Raw Data File Type(s)cdf
Analysis Type DetailGC-MS
Release Date2023-01-25
Release Version1
Nicholas Devanney Nicholas Devanney
https://dx.doi.org/10.21228/M8G711
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Subject:

Subject ID:SU002539
Subject Type:Cultured cells
Subject Species:Mus musculus
Taxonomy ID:10090
Genotype Strain:Primary microglia isolated from APOE-targeted replacement mice homozygous for human E3 (B6.129P2-Apoe^tm2(APOE*3)Mae N8, Taconic #1548-F) or human E4 (B6.129P2- Apoe^tm3(APOE*4)Mae N8, Taconic #1549-F) alleles
Age Or Age Range:P0-P3
Gender:Pooled
  logo