Summary of Study ST002175

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001384. The data can be accessed directly via it's Project DOI: 10.21228/M8TH8J This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002175
Study TitleEffect of external high-dose rate radiation on mouse biofluid metabolomic signatures
Study SummaryIn the event of an improvised nuclear device (IND), a complex IR exposure will occur consisting of both low (LDR) and high-dose rates (HDR). We have previously addressed LDR exposures from internal emitters or externally deposited radionuclides on biofluid small molecule signatures, but further research on the HDR component is required. Here, we exposed 8 − 10 week old male C57BL/6 mice to a cumulative dose of 3 Gy using a reference dose rate of 0.7 Gy/min or a HDR of 7 Gy/sec, collected urine and serum at 1 and 7 d, then compared the metabolite signatures using either untargeted (urine) or targeted (serum) approaches with liquid chromatography mass spectrometry platforms.
Institute
Georgetown University
Last NamePannkuk
First NameEvan
Address3970 Reservoir Rd, NW New Research Building E504
Emailelp44@georgetown.edu
Phone2026875650
Submit Date2022-04-14
Raw Data AvailableYes
Raw Data File Type(s)raw(Waters)
Analysis Type DetailLC-MS
Release Date2023-06-01
Release Version1
Evan Pannkuk Evan Pannkuk
https://dx.doi.org/10.21228/M8TH8J
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Treatment:

Treatment ID:TR002273
Treatment Summary:Male 8 – 10 week old C57BL/6 mice were obtained from Charles River Laboratories (Frederick, MD, USA) and were irradiated using the FLASH irradiator at the Radiological Research Accelerator Facility [16] (Figure S1). This novel irradiator is based on a Clinac 2100C (Varian Medical Systems, Corona, CA, USA) where the pulse delivery is controlled using in house software. All irradiations were performed using 9 MeV electrons with no scatterer or flattening filter. For these experiments, mice were placed in a 72 mm x 41mm x41mm acrylic box in which air holes had been drilled (The Container Store, Coppell, TX, USA). For 0.7 Gy/min irradiations, mice (n=6) were individually placed at 120 cm above the clinac head and irradiation delivered at 3.25 pulses per second. In this configuration, 3 Gy was delivered in 580 pulses. For 7 Gy/sec mice (n=6) were individually placed 20cm above the clinac head (Figure S1) and dose delivered at 180 pulses/sec after allowing 20 sec where the acceleration and electron source were both on but operated asynchronously so that no beam is delivered. In this configuration, 3 Gy was delivered in 78 pulses. Dosimetry was performed prior to irradiation using a NIST-traceable Advanced Marcus Ion Chamber (AMIC) and Unidos E electrometer (PTW, Freiburg, Germany). Verification of dosimetry was performed using OBT3 radiochromic film (Ashland Specialty Chemicals, Wayne, NJ, USA).
  logo