Return to study ST001140 main page

MB Sample ID: SA078306

Local Sample ID:Prednisolone-d0-P3
Subject ID:SU001204
Subject Type:Mammal
Subject Species:Canis lupus familiaris
Taxonomy ID:9615
Genotype Strain:Beagle
Age Or Age Range:8 to 83 months
Weight Or Weight Range:12.2 to 18.9 kg
Gender:Male and female
Animal Animal Supplier:In-house breeding
Animal Feed:Standard pellet/kibble maintenance diet

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN001870 AN001871 AN001872 AN001873
Analysis type MS MS MS MS
Chromatography type Reversed phase Reversed phase HILIC Reversed phase
Chromatography system Agilent 1290 Infinity Agilent 1290 Infinity Agilent 1290 Infinity Agilent 1100
Column Agilent Zorbax RRHD Eclipse Plus C18 (50 x 2.1mm,1.8um,95 Å) Agilent Zorbax RRHD Eclipse Plus C18 (50 x 2.1mm,1.8um,95 Å) Waters Acquity BEH HILIC (100 x 2.1mm,1.7um,130 Å) Agilent Zorbax Eclipse XDB C18 (150 x 3.0mm,1.8um)
MS Type ESI ESI ESI ESI
MS instrument type Triple quadrupole Triple quadrupole Triple quadrupole Triple quadrupole
MS instrument name Agilent 6460 QQQ Agilent 6495 QQQ Agilent 6490 QQQ ABI Sciex 4000 QTrap
Ion Mode POSITIVE POSITIVE POSITIVE POSITIVE
Units µmol/L µmol/L µmol/L µmol/L

MS:

MS ID:MS001726
Analysis ID:AN001870
Instrument Name:Agilent 6460 QQQ
Instrument Type:Triple quadrupole
MS Type:ESI
MS Comments:Phospholipids, cholesteryl esters and diacylglycerols were measured with an Agilent 6460 triple quadrupole mass spectrometer in dynamic MRM mode. The ESI source settings were: polarity: positive, dry gas temperature 300°C, dry gas flow 5L/min, nebulizer pressure: 45 psi, sheath gas temperature: 250°C, sheath gas flow: 11 L/min, capillary voltage: 3500 V, noozle: 500. MRM transitions with collision energies are detailed in the attached protocol. Data were processed with Agilent MassHunter QQQ Quantitative Analysis (version B.08). For plasmalogen PE (PE-P), transitions with the fatty acid as product were used as quantifiers, and those with the head group as qualifiers. Plasmalogen PCs (PC-P), ether PCs (PC-O) and odd-chain fatty acid PCs were distinguished based on retention time (Alshehry et al., Circulation, 2016; Huynh et al, Cell Chem. Biol. 2019). Normalised peak areas were calculated by dividing the peak areas of the analyte with the corresponding class-specific internal standard. Relative abundance was obtained by multiplying the normalised peak areas with the molar concentration of the corresponding internal standard. Lipid species with a median peak area in the PQC samples below 250 or less than 5 times of the highest signal in Blank samples were excluded. Additionally, the coefficient of variation (CV) of the normalised peak area was calculated for each lipid species in the PQC samples of each experimental group. Species with a CV higher than 25% in any of the two groups were excluded from subsequent evaluation.
Ion Mode:POSITIVE
Capillary Voltage:3500 V
Collision Gas:Nitrogen
Dry Gas Flow:5 L/min
Dry Gas Temp:300°C
Fragment Voltage:135 V
Nebulizer:45 psi
  
MS ID:MS001727
Analysis ID:AN001871
Instrument Name:Agilent 6495 QQQ
Instrument Type:Triple quadrupole
MS Type:ESI
MS Comments:Sphingolipids were measured with an Agilent 6495A triple quadrupole mass spectrometer in dynamic MRM mode. The ESI source settings were: polarity: positive, dry gas temperature 200°C, dry gas flow 12 L/min, nebulizer pressure: 25 psi, sheath gas temperature: 250°C, sheath gas flow: 12 L/min, capillary voltage: 3500 V, noozle: 500, iFunnel high pressure RF: 80, iFunnel high pressure RF: 40. MRM transitions with collision energies are detailed in the attached protocol. Data were processed with Agilent MassHunter QQQ Quantitative Analysis (version B.08). Transitions of precursor ions with water loss were used as qualifiers. Normalised peak areas were calculated by dividing the peak areas of the analyte with the corresponding class-specific internal standard. Relative abundance was obtained by multiplying the normalised peak areas with the molar concentration of the corresponding internal standard. Lipid species with a median peak area in the PQC samples below 250 or less than 5 times of the highest signal in Blank samples were excluded. Additionally, the coefficient of variation (CV) of the normalised peak area was calculated for each lipid species in the PQC samples of each experimental group. Species with a CV higher than 25% in any of the two groups were excluded from subsequent evaluation.
Ion Mode:POSITIVE
Capillary Voltage:3500 V
Collision Gas:Nitrogen
Dry Gas Flow:12 L/min
Dry Gas Temp:200°C
Fragment Voltage:135 V
Nebulizer:25 psi
  
MS ID:MS001728
Analysis ID:AN001872
Instrument Name:Agilent 6490 QQQ
Instrument Type:Triple quadrupole
MS Type:ESI
MS Comments:Derivatized S1P species were measured with an Agilent 6490 triple quadrupole mass spectrometer in MRM mode. The ESI source settings were: polarity: positive, dry gas temperature 200°C, dry gas flow 12 L/min, nebulizer pressure: 25 psi, sheath gas temperature: 400°C, sheath gas flow: 12 L/min, capillary voltage: 3500 V, noozle: 500, iFunnel high pressure RF: 200, iFunnel high pressure RF: 110. MRM transitions with collision energies are detailed in the attached protocol. Data were processed with Agilent MassHunter QQQ Quantitative Analysis (version B.08). The m/z 60 fragments were used as quantifiers, the m/z 103 fragments as qualifiers. Normalised peak areas were calculated by dividing the peak areas of the S1P species with the internal standard. Relative abundance was obtained by multiplying the normalised peak areas with the molar concentration of the corresponding internal standard. S1P species with a median peak area in the PQC samples below 250 or less than 5 times of the highest signal in Blank samples were excluded. Additionally, the coefficient of variation (CV) of the normalised peak area was calculated for each lipid species in the PQC samples of each experimental group. Species with a CV higher than 25% in any of the two groups were excluded from subsequent evaluation.
Ion Mode:POSITIVE
Capillary Voltage:3500 V
Collision Gas:Nitrogen
Dry Gas Flow:12 L/min
Dry Gas Temp:200°C
Fragment Voltage:135 V
Nebulizer:25 psi
  
MS ID:MS001729
Analysis ID:AN001873
Instrument Name:ABI Sciex 4000 QTrap
Instrument Type:Triple quadrupole
MS Type:ESI
MS Comments:Triacylglycerol species were measured with a Sciex 4000 QTRAP mass spectrometer operated in single-ion monitoring (SIM) mode at unit resolution. The ESI source settings were: polarity: positive, electrospray voltage: 5 kV, source temperature: 250°C, drying gas: nitrogen, gas 1 flow: 40 units, gas 2 flow: 30 units and curtain gas flow: 10 units. MRM transitions with collision energies are detailed in the attached protocol. Raw data were processed with Sciex Analyst (Version 1.6.2). Normalised peak areas were calculated by dividing the peak areas of the TG species with the internal standard. Relative abundance was obtained by multiplying the normalised peak areas with the molar concentration of the internal standard. Lipid species with a median peak area in the PQC samples below 250 or less than 5 times of the highest signal in Blank samples were excluded. Additionally, the coefficient of variation (CV) of the normalised peak area was calculated for each lipid species in the PQC samples of each experimental group. Species with a CV higher than 25% in any of the two groups were excluded from subsequent evaluation.
Ion Mode:POSITIVE
Ion Spray Voltage:5 kV
Source Temperature:250°C
  logo