Summary of Study ST001637

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001047. The data can be accessed directly via it's Project DOI: 10.21228/M8C68D This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001637
Study TitleA Metabolome Atlas of the Aging Mouse Brain
Study SummaryThe mammalian brain relies on neurochemistry to fulfill its functions. Yet, the complexity of the brain metabolome and its changes during diseases or aging remains poorly understood. To start bridging this gap, we generated a metabolome atlas of the aging mouse brain from 10 anatomical regions spanning from adolescence to late adulthood. We combined data from three chromatography-based mass spectrometry assays and structurally annotated 1,709 metabolites to reveal the underlying architecture of aging-induced changes in the brain metabolome. Overall differences between sexes were minimal. We found 94% of all metabolites to significantly differ between brain sections in at least one age group. We also discovered that 90% of the metabolome showed significant changes with respect to age groups. For example, we identified a shift in sphingolipid patterns during aging that is related to myelin remodeling in the transition from adolescent to adult brains. This shift was accompanied by large changes in overall signature in a range of other metabolic pathways. We found clear metabolic similarities in brain sections that were functionally related such as brain stem, cerebrum and cerebellum. In cerebrum, metabolic correlation patterns got markedly weaker in the transition from adolescent to ear adults, whereas correlation patterns between cerebrum and brainstem regions decreased from early to late adulthood. We were also able to map metabolic changes to gene and protein brain atlases to link molecular changes to metabolic brain phenotypes. Metabolic profiles can be investigated via https://atlas.metabolomics.us/. This new resource enables brain researchers to link new metabolomic studies to a foundation data set.
Institute
University of California, Davis
DepartmentGenome Center
LaboratoryWest Coast Metabolomics Center
Last NameDing
First NameJun
Address451 East Health Science Drive, Davis, CA, 95616, USA
Emailjunding@ucdavis.edu
Phone773-326-5420
Submit Date2020-12-23
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailGC-MS/LC-MS
Release Date2021-08-30
Release Version1
Jun Ding Jun Ding
https://dx.doi.org/10.21228/M8C68D
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN002675 AN002676 AN002677 AN002678 AN002679
Analysis type MS MS MS MS MS
Chromatography type HILIC HILIC Reversed phase Reversed phase GC
Chromatography system Thermo Vanquish Thermo Vanquish Thermo Vanquish Thermo Vanquish Agilent 6890N
Column Waters XBridge Amide (100 x 4.6mm,3.5um) Waters XBridge Amide (100 x 4.6mm,3.5um) Waters Acquity CSH C18 (100 x 2.1mm,1.7um) Waters Acquity CSH C18 (100 x 2.1mm,1.7um) Restek Rtx-5Sil (30m x 0.25mm,0.25um)
MS Type ESI ESI ESI ESI EI
MS instrument type Orbitrap LTQ-FT Orbitrap Ion trap GC-TOF
MS instrument name Thermo Q Exactive HF hybrid Orbitrap Thermo Q Exactive HF hybrid Orbitrap Thermo Q Exactive HF hybrid Orbitrap Thermo Q Exactive HF hybrid Orbitrap Leco Pegasus IV TOF
Ion Mode POSITIVE NEGATIVE POSITIVE NEGATIVE POSITIVE
Units Peak height Peak height Peak height Peak height Peak height
  logo