Summary of Study ST002140

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001355. The data can be accessed directly via it's Project DOI: 10.21228/M8K70K This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002140
Study TitleMitochondrial respiration in B lymphocytes is essential for humoral immunity by controlling flux of the TCA cycle
Study SummaryThe function of mitochondrial respiration during B cell fate decisions and differentiation 55 remained equivocal. This study reveals that selection for mitochondrial fitness occurs during B 56 cell activation and is essential for subsequent plasma cell differentiation. By expressing a 57 mutated mitochondrial helicase in transitional B cells, we depleted mitochondrial DNA during 58 B cell maturation, resulting in reduced oxidative phosphorylation. Although no changes in 59 follicular B cell development were evident, germinal centers, class switch recombination to 60 IgG, plasma cell maturation and humoral immunity were diminished. Defective oxidative 61 phosphorylation led to aberrant flux of the tricarboxylic acid cycle and lowered the amount of 62 saturated phosphatidic acid. Consequently, mTOR activity and BLIMP1 induction were 63 curtailed whereas HIF1 _and glycolysis were amplified. Exogenous phosphatidic acid 64 increased mTOR activity in activated B cells. Hence, mitochondrial function is required and 65 selected for in activated B cells for the successful generation of functional plasma cells.
Institute
University of Erlangen-Nürnberg
DepartmentDivision of Molecular Immunology.Universitätsklinikum Erlangen, Nikolaus Fibinger Zentrum
LaboratoryProf. Mielenz
Last NameMielenz
First NameDirk
AddressNikolaus-Fiebiger-Zentrum, Glückstraße 6, 91054 Erlangen
Emaildirk.mielenz@fau.de
Phone++49 9131 8539105
Submit Date2022-04-06
Raw Data AvailableYes
Raw Data File Type(s)mzML
Analysis Type DetailLC-MS/MS(Dir. Inf.)
Release Date2022-05-02
Release Version1
Dirk Mielenz Dirk Mielenz
https://dx.doi.org/10.21228/M8K70K
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN003501 AN003502
Analysis type MS MS
Chromatography type Ion Chromatography None (Direct infusion)
Chromatography system ThermoDionexICS3000 TriVersa NanoMate
Column ThermoDionexAS11/AG11 TriVersa NanoMate
MS Type ESI ESI
MS instrument type QTRAP QTRAP
MS instrument name ABI Sciex 3200 QTrap ABI Sciex 6500 QTrap
Ion Mode NEGATIVE POSITIVE
Units mol% pmol/10E6 cells

Chromatography:

Chromatography ID:CH002587
Chromatography Summary:The HPLC-system was controlled by the software Chromeleon VS 6.8 and DCMS-Link VS1.1 (Dionex) in combination with Analyst 1.4.1 (Applied Biosystems). Metabolites were separated on two IonPac AS11HC columns (2 × 250 mm; Dionex) protected by an AG11HC guard column (2 × 50 mm). The elution gradient was generated with water (eluent A) and 100 mm KOH (eluent B) within a total run time of 80 min at a flow rate of 0.25 mL min−1 and a column temperature of 35°C as follows: 0 min, 4%; 0 to 1 min, 4%; 1 to 6 min, 15%; 6 to 12 min, 19%; 12 to 22 min, 20%; 22 to 24 min, 23%; 24 to 27 min, 35%; 27 to 37 min, 38%; 37 to 39 min, 45%; 39 to 44 min, 100%; 44 to 71 min, 100%; 71 to 76 min, 4%; and 76 to 80 min, 4% eluent B. Ref.: Hofmann, J., Bornke, F., Schmiedl, A., Kleine, T., and Sonnewald, U. (2011). Detecting functional groups of Arabidopsis mutants by metabolic profiling and evaluation of pleiotropic responses. 10Front Plant Sci 2, 82.
Instrument Name:ThermoDionexICS3000
Column Name:ThermoDionexAS11/AG11
Chromatography Type:Ion Chromatography
  
Chromatography ID:CH002588
Chromatography Summary:Dried lipid extracts were dissolved in 300 μl of methanol. 20 μl of the lipid extract in methanol were loaded into 96-well plates and diluted with 20 μl of 20 mM ammonium acetate in methanol. Lipid infusion and ionization was conducted using Nano-ESI chips with the TriVersa NanoMate operated by the ChipSoft Software (Advion) under the following settings: sample infusion volume: 14 μl, volume of air to aspirate after sample: 1 μl, air gap before chip: enabled, aspiration delay: 0 s, prepiercing: with mandrel, spray sensing: enabled, cooling temperature: 14°C, gas pressure: 0.5 psi, ionization voltage: 1.4 kV, and vent headspace: enabled. Prewetting was done once. Ref.: Kumar, V., Bouameur, J.E., Bar, J., Rice, R.H., Hornig-Do, H.T., Roop, D.R., Schwarz, N., Brodesser, 1120 S., Thiering, S., Leube, R.E., et al. (2015). A keratin scaffold regulates epidermal barrier 1121 formation, mitochondrial lipid composition, and activity. J Cell Biol 211, 1057–1075. Ref.: Kumar, V., Bouameur, J.E., Bar, J., Rice, R.H., Hornig-Do, H.T., Roop, D.R., Schwarz, N., Brodesser, 1120 S., Thiering, S., Leube, R.E., et al. (2015). A keratin scaffold regulates epidermal barrier 1121 formation, mitochondrial lipid composition, and activity. J Cell Biol 211, 1057–1075.
Instrument Name:TriVersa NanoMate
Column Name:TriVersa NanoMate
Chromatography Type:None (Direct infusion)
  logo