Summary of Study ST002199

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001402. The data can be accessed directly via it's Project DOI: 10.21228/M8H42P This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002199
Study TitleFOXA2 controls the anti-oxidant response in FH-deficient cells independent of NRF2
Study SummaryHereditary Leiomyomatosis and renal cell cancer is caused by fumarate hydratase loss of heterozygosity and subsequence accumulation of fumarate. Fumarate is known to activate the anti-oxidant response and is key for cellular survival. Fumarate succinates KEAP1 which releases NRF2 to activate the antioxidant response. The role of fumarate on the global regulatory chromatin landscape is less understood. Here, by integrating chromatin accessibility and histone ChIP-seq profiles, we identify complex transcription factor networks involved in the highly remodelled chromatin landscape of FH-deficient cells. We implicate FOXA2 in the maintenance of FH-deficient cells by regulating anti-oxidant response genes and subsequent metabolic output, independent of NRF2. These results identify new redox and amino acid metabolism regulators and provide new avenues for therapeutic intervention.
Institute
CECAD Research Center
Last NameYang
First NameMing
AddressJoseph-Stelzmann-Straße 26, Köln, Koeln, 50931, Germany
Emailming.yang@uni-koeln.de
Phone4922147884306
Submit Date2022-06-01
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2022-07-14
Release Version1
Ming Yang Ming Yang
https://dx.doi.org/10.21228/M8H42P
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN003599
Analysis type MS
Chromatography type HILIC
Chromatography system Thermo Vanquish Horizon
Column SeQuant ZIC-pHILIC
MS Type ESI
MS instrument type Orbitrap
MS instrument name Thermo Exploris 240
Ion Mode UNSPECIFIED
Units peak area

Chromatography:

Chromatography ID:CH002659
Chromatography Summary:Chromatographic separation of metabolites was achieved using a Millipore Sequant ZIC-pHILIC analytical column (5 µm, 2.1 × 150 mm) equipped with a 2.1 × 20 mm guard column (both 5 mm particle size) with a binary solvent system. Solvent A was 20 mM ammonium carbonate, 0.05% ammonium hydroxide; Solvent B was acetonitrile. The column oven and autosampler tray were held at 40 °C and 4 °C, respectively. The chromatographic gradient was run at a flow rate of 0.200 mL/min as follows: 0–2 min: 80% B; 2-17 min: linear gradient from 80% B to 20% B; 17-17.1 min: linear gradient from 20% B to 80% B; 17.1-23 min: hold at 80% B. Samples were randomized and the injection volume was 5 µl. A pooled quality control (QC) sample was generated from an equal mixture of all individual samples and analysed interspersed at regular intervals.
Instrument Name:Thermo Vanquish Horizon
Column Name:SeQuant ZIC-pHILIC
Column Temperature:40
Flow Gradient:0-2 min: 80% B; 2-17 min: linear gradient from 80% B to 20% B; 17-17.1 min: linear gradient from 20% B to 80% B; 17.1-23 min: hold at 80% B
Flow Rate:0.200 mL/min
Solvent A:100% water; 20 mM ammonium carbonate; 0.05% ammonium hydroxide
Solvent B:100% acetonitrile
Chromatography Type:HILIC
  logo