Summary of Study ST002263

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001445. The data can be accessed directly via it's Project DOI: 10.21228/M8Z119 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002263
Study TitleIntermittent fasting induces rapid hepatocyte proliferation to maintain the hepatostat
Study SummaryNutrient availability fluctuates in most natural populations, forcing organisms to undergo periods of fasting and re-feeding. It is unknown how dietary change influences liver homeostasis. Here, we show that a switch from ad libitum feeding to intermittent fasting (IF) promotes rapid hepatocyte proliferation. Mechanistically, IF- induced hepatocyte proliferation is driven by the combined action of intestinally produced, systemic endocrine FGF15 and localized WNT signaling. IF proliferation re-establishes a constant liver-to-body-mass ratio during periods of fasting and re-feeding, a process termed the hepatostat. This study provides the first example of dietary influence on adult hepatocyte proliferation, and challenges the widely held view that liver tissue is mostly quiescent unless chemically or mechanically injured.
Institute
Stanford University
Last NameDeFelice
First NameBrian
Address1291 Welch Rd.
Emailbcdefelice@ucdavis.edu
Phone5303564485
Submit Date2022-08-01
Raw Data AvailableYes
Raw Data File Type(s)mzXML, raw(Thermo)
Analysis Type DetailLC-MS
Release Date2022-08-31
Release Version1
Brian DeFelice Brian DeFelice
https://dx.doi.org/10.21228/M8Z119
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN003696 AN003697
Analysis type MS MS
Chromatography type HILIC HILIC
Chromatography system Thermo Vanquish Thermo Vanquish
Column Waters Acquity BEH Amide (150 x 2.1mm,1.7um) Waters Acquity BEH Amide (150 x 2.1mm,1.7um)
MS Type ESI ESI
MS instrument type Orbitrap Orbitrap
MS instrument name Thermo Q Exactive HF hybrid Orbitrap Thermo Q Exactive HF hybrid Orbitrap
Ion Mode POSITIVE NEGATIVE
Units relative counts relative counts

Chromatography:

Chromatography ID:CH002739
Chromatography Summary:Untargeted metabolomics analysis was conducted as described previously (https://www.nature.com/articles/s41586-021-03707-9) with some modification. Liver extracts were analyzed via hydrophilic interaction liquid chromatography (HILIC) coupled to a Thermo Q-Exactive HF high resolution mass spectrometer. Each sample was analyzed in both positive and negative ionization modes (ESI+, ESI-) via subsequent injections. Full MS-ddMS2 data was collected, an inclusion list was used to prioritize MS2 selection of metabolites from our in-house ‘local’ library, when additional scan bandwidth was available MS2 was collected in a data-dependent manner. Mass range was 60-900 mz, resolution was 60k (MS1) and 15k (MS2), centroid data was collected, loop count was 4, isolation window was 1.5 Da. Metabolomics data was processed using MS-DIAL v4.60 (https://www.nature.com/articles/s41587-020-0531-2) and queried against a combination of our in-house MS2 library (https://www.nature.com/articles/s41586-021-03707-9) and MassBank of North America, the largest freely available spectral repository (https://doi.org/10.1002/mas.21535). Annotations were scored using guidelines from the metabolomics standards initiative (https://www.nature.com/articles/nbt0807-846b). Features were excluded from analysis if peak height was not at least 5-fold greater in one or more samples compared to the procedural blank average. Statistical analysis of annotated features was implemented using MetaboAnalyst 5.0 (https://doi.org/10.1093/nar/gkab382). Data visualization including principal component analysis and volcano plots were generated using log10 transformed peak heights.
Instrument Name:Thermo Vanquish
Column Name:Waters Acquity BEH Amide (150 x 2.1mm,1.7um)
Chromatography Type:HILIC
  logo