Summary of Study ST002472

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench,, where it has been assigned Project ID PR001596. The data can be accessed directly via it's Project DOI: 10.21228/M8D701 This work is supported by NIH grant, U2C- DK119886.


This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002472
Study TitleLinking bacterial metabolites to disease-associated microbes to uncover mechanisms of host-microbial interactions in intestinal inflammation. Veillonella parvula cell and media profiling
Study SummaryUnderstanding the role of the gut microbiome in inflammatory and autoimmune diseases requires the identification of microbial molecular effectors and their link to host pathophysiology. Here, we present a framework to identify and characterize novel microbial metabolites in patient samples and to directly link their production to disease-associated microbes. We applied this approach to investigate the spectrum of disease severity and treatment response in ulcerative colitis (UC) using longitudinal metabolite and strain profiles combined with paired plasma profiles.
Broad Institute of MIT and Harvard
Last NameXavier
First NameRamnik
Address415 Main Street
Submit Date2023-02-10
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2024-02-12
Release Version1
Ramnik Xavier Ramnik Xavier application/zip

Select appropriate tab below to view additional metadata details:

Combined analysis:

Analysis ID AN004037 AN004038
Analysis type MS MS
Chromatography type HILIC Reversed phase
Chromatography system Shimadzu Nexera X2 Shimadzu Nexera X2
Column Waters Atlantis HILIC (150 x 2 mm, 3 μm) Waters Acquity BEH C8 (100 x 2.1mm, 1.7um)
MS instrument type Orbitrap Orbitrap
MS instrument name Thermo Q Exactive Plus Orbitrap Thermo Q Exactive Plus Orbitrap
Units Abundance Abundance


Chromatography ID:CH002985
Instrument Name:Shimadzu Nexera X2
Column Name:Waters Atlantis HILIC (150 x 2 mm, 3 μm)
Column Temperature:30C
Flow Gradient:Isocratically with 5% mobile phase A for 1 minute followed by a linear gradient to 40% mobile phase B over 10 minutes
Flow Rate:250 µL/min
Solvent A:100% water; 10 mM ammonium formate; 0.1% formic acid
Solvent B:100% acetonitrile; 0.1% formic acid
Chromatography Type:HILIC
Chromatography ID:CH002986
Instrument Name:Shimadzu Nexera X2
Column Name:Waters Acquity BEH C8 (100 x 2.1mm, 1.7um)
Column Temperature:40C
Flow Gradient:The column was eluted at a flow rate of 450 µL/min isocratically for 1 minute at 80% mobile phase A, followed by a linear gradient to 80% mobile-phase B over 2 minutes, a linear gradient to 100% mobile phase B over 7 minutes, and then 3 minutes at 100% mobile-phase B.
Flow Rate:450 µL/min
Solvent A:95% water/5% methanol; 10 mM ammonium acetate; 0.1% acetic acid
Solvent B:100% methanol; 0.1% acetic acid
Chromatography Type:Reversed phase