Summary of Study ST002764

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001722. The data can be accessed directly via it's Project DOI: 10.21228/M8441W This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002764
Study TitleIdentification of pre-diagnostic lipid sets associated with liver cancer risk using untargeted lipidomics and chemical set analysis – a nested case-control study within the ATBC cohort
Study SummaryIn pre-disposed individuals, a reprogramming of the hepatic lipid metabolism may support liver cancer initiation. We conducted a high-resolution mass spectrometry based untargeted lipidomics analysis of pre-diagnostic serum samples from a nested case-control study (219 liver cancer cases and 219 controls) within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Out of 462 annotated lipids, 158 (34.2%) were associated with liver cancer risk in a conditional logistic regression analysis at a false discovery rate (FDR) < 0.05. A chemical set enrichment analysis (ChemRICH) and co-regulatory set analysis suggested that 22/28 lipid classes and 47/83 correlation modules were significantly associated with liver cancer risk (FDR <0.05). Strong positive associations were observed for monounsaturated fatty acids (MUFA), triacylglycerols (TAGs), and phosphatidylcholines (PCs) having MUFA acyl chains. Negative associations were observed for sphingolipids (ceramides and sphingomyelins), lysophosphatidylcholines, cholesterol esters and polyunsaturated fatty acids (PUFA) containing TAGs and PCs. Stearoyl-CoA desaturase enzyme 1 (SCD1), a rate limiting enzyme in fatty acid metabolism and ceramidases seems to be critical in this reprogramming. In conclusion, our study reports pre-diagnostic lipid changes that provide novel insights into hepatic lipid metabolism reprogramming may contribute to a pro-cell growth and anti-apoptotic tissue environment and, in turn, support liver cancer initiation. Study
Institute
Icahn School of Medicine at Mount Sinai
DepartmentEnvironmental Medicine and Public Health
LaboratoryIntegrated Data Science Laboratory for Metabolomics and Exposomics
Last NameBarupal
First NameDinesh
AddressCAM Building 102street
Emaildinesh.barupal@mssm.edu
Phone5309794354
Submit Date2023-06-28
Raw Data AvailableYes
Raw Data File Type(s)mzML
Analysis Type DetailLC-MS
Release Date2023-07-03
Release Version1
Dinesh Barupal Dinesh Barupal
https://dx.doi.org/10.21228/M8441W
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN004498 AN004499
Analysis type MS MS
Chromatography type Reversed phase Reversed phase
Chromatography system Agilent 1290 Infinity Agilent 1290 Infinity
Column Waters ACQUITY UPLC BEH C18 (100 x 2.1mm,1.7um) Waters ACQUITY UPLC BEH C18 (100 x 2.1mm,1.7um)
MS Type ESI ESI
MS instrument type QTOF QTOF
MS instrument name Agilent 6550 QTOF Agilent 6530 QTOF
Ion Mode NEGATIVE POSITIVE
Units normalized peak intensity normalized peak intensity

Chromatography:

Chromatography ID:CH003380
Chromatography Summary:The LC/QTOFMS analyses are performed using an Agilent 1290 Infinity LC system (G4220A binary pump, G4226A autosampler, and G1316C Column Thermostat) coupled to either an Agilent 6530 (positive ion mode) or an Agilent 6550 mass spectrometer equipped with an ion funnel (iFunnel) (negative ion mode). Lipids are separated on an Acquity UPLC CSH C18 column (100 x 2.1 mm; 1.7 µm) maintained at 65°C at a flow-rate of 0.6 mL/min. Solvent pre-heating (Agilent G1316) was used. The mobile phases consist of 60:40 acetonitrile:water with 10 mM ammonium formate and 0.1% formic acid (A) and 90:10 propan-2-ol:acetonitrile with 10 mM ammonium formate and 0.1% formic acid. The gradient is as follows: 0 min 85% (A); 0–2 min 70% (A); 2–2.5 min 52% (A); 2.5–11 min 18% (A); 11–11.5 min 1% (A); 11.5–12 min 1% (A); 12–12.1 min 85% (A); 12.1–15 min 85% (A). A sample volume of 3 µL is used for the injection. Sample temperature is maintained at 4°C in the autosampler.
Instrument Name:Agilent 1290 Infinity
Column Name:Waters ACQUITY UPLC BEH C18 (100 x 2.1mm,1.7um)
Column Temperature:65
Flow Gradient:0 min 85% (A); 0-2 min 70% (A); 2-2.5 min 52% (A); 2.5-11 min 18% (A); 11-11.5 min 1% (A); 11.5-12 min 1% (A); 12-12.1 min 85% (A); 12.1-15 min 85% (A).
Flow Rate:0.6
Solvent A:60% acetonitrile/40% water; 0.1% formic acid; 10 mM ammonium formate
Solvent B:90% isopropanol/10% acetonitrile; 0.1% formic acid; 10 mM ammonium formate
Chromatography Type:Reversed phase
  logo