Summary of Study ST002403

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001532. The data can be accessed directly via it's Project DOI: 10.21228/M8P11T This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002403
Study TitleDeep multi-omic profiling reveals extensive mitochondrial remodeling driven by glycemia in early diabetic kidney disease (Mitochondria)
Study SummaryChanges in mitochondrial energy metabolism are thought to be central to the development of diabetic kidney disease (DKD); however, whether this response is explicitly driven by systemic glucose concentrations remains unknown. Here, we show that titrating blood glucose concentrations in vivo directly impacts mitochondrial morphology and bioenergetics and remodels the mitochondrial proteome in the kidney in early DKD. Mitoproteomic analysis revealed profound metabolic disturbances induced by severe hyperglycemia, including upregulation of enzymes involved in the TCA cycle and fatty acid metabolism, enhanced ketogenesis as well as extensive dysregulation of the mitochondrial SLC25 transporter family. The metabolite and lipid landscape were perturbed by severe hyperglycemia; untargeted metabolomics and lipidomics confirmed the enrichment of TCA cycle metabolites, an increase in triglyceride concentrations, and extensive and specific cardiolipin remodeling. Lowering blood glucose to moderate hyperglycemia stabilized all three omic landscapes, partially prevented changes in mitochondrial morphology and bioenergetics, and improved kidney injury. This study provides insights into altered substrate utilization and energy generation in the kidney early in diabetes, during moderate and severe hyperglycemia and has implications for therapeutic strategies aiming at the reinvigoration of mitochondrial function and signaling in diabetes.
Institute
Baker Heart and Diabetes Institute
LaboratoryMetabolomics
Last NameHuynh
First NameKevin
Address75 Commercial Road, Melbourne, 3004
Emailkevin.huynh@baker.edu.au
Phone0385321537
Submit Date2022-11-20
Num Groups3
Raw Data AvailableYes
Raw Data File Type(s)mzML
Analysis Type DetailLC-MS
Release Date2023-12-01
Release Version1
Kevin Huynh Kevin Huynh
https://dx.doi.org/10.21228/M8P11T
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Collection:

Collection ID:CO002485
Collection Summary:Mitochondria were isolated by differential centrifugation. Freshly harvested renal cortex (50 mg) was finely minced and gently homogenized with glass Teflon tissue grinders in 2 ml ice-cold isolation medium, pH 7.2 (70 mM sucrose, 210 mM mannitol, 5 mM HEPES, 1mM EGTA). The homogenate was centrifuged at 800 g for 5 min at 4C and the resulting supernatant was centrifuged at 8,000 g for 10 min at 4C. After washing with 0.5 ml ice-cold isolation buffer, the mitochondrial pellet was resuspended in 200 l ice-cold isolation medium. Total protein was determined by the bicinchoninic acid method according to the manufacturer’s instructions (BCA Protein Assay Kit, Pierce-Thermo Fisher Scientific, Melbourne, Australia).
Sample Type:Mitochondria
  logo